## Discrete Wavelet Transform Filter Bank Implementation (part 2)

December 5, 20109 comments

Following the previous blog entry: http://www.dsprelated.com/showarticle/115.php

Difference between DWT and DWPT

Before getting to the equivalent filter obtention, I first want to talk about the difference between DWT(Discrete Wavelet Transform) and DWPT (Discrete Wavelet Packet Transform). The latter is used mostly for image processing.

While DWT has a single "high-pass" branch that filters the signal with the h1 filter, the DWPT separates branches symmetricaly: this means that one...

## State Space Representation and the State of Engineering Thinking

November 23, 20102 comments

Most, if not all, textbooks in signal processing (SP) thoroughly covers the frequency analysis of signals and systems alike, including the Fourier and the Z-transform that produce the well known Transfer Function. Another way of signal analysis, not as popular in signal processing though, is State Space representation. State space models describes the internal signals of the system or the process and how it affect the output, in contrast to the frequency representation that only describe the...

## Matlab Programming Contest

November 10, 2010

Every 6 months Mathworks hosts an online Matlab programming contest.  If you love or hate Matlab check out the contest.  The group does a really good job putting together the puzzles.  The contest runs for a week and starts today at noon EST (10 Nov 2010).

If you are an experienced Matlab programmer or new to Matlab it is worth checking out.  Even if you do not intend on submitting solutions.  Also, the problems / puzzles only require the base Matlab...

## Discrete Wavelet Transform Filter Bank Implementation (part 1)

October 27, 20101 comment

UPDATE: Added graphs and code to explain the frequency division of the branches

The focus of this article is to briefly explain an implementation of this transform and several filter bank forms. Theoretical information about DWT can be found elsewhere.

First of all, a 'quick and dirty' simplified explanation of the differences between DFT and DWT:

The DWT (Discrete Wavelet Transform), simply put, is an operation that receives a signal as an input (a vector of data) and...

## Least-squares magic bullets? The Moore-Penrose Pseudoinverse

October 24, 20109 comments

Hello,

the topic of this brief article is a tool that can be applied to a variety of problems: The Moore-Penrose Pseudoinverse.While maybe not exactly a magic bullet, it gives us least-squares optimal solutions, and that is under many circumstances the best we can reasonably expect.

I'll demonstrate its use on a short example. More details can be found for example on Wikipedia, or the Matlab documentation...

## Understanding Radio Frequency Distortion

September 26, 20102 comments
Overview

The topic of this article are the effects of radio frequency distortions on a baseband signal, and how to model them at baseband. Typical applications are use as a simulation model or in digital predistortion algorithms.

Introduction

Transmitting and receiving wireless signals usually involves analog radio frequency circuits, such as power amplifiers in a transmitter or low-noise amplifiers in a receiver.Signal distortion in those circuits deteriorates the link quality. When...

## Knowledge Mine for Embedded Systems

June 25, 20101 comment

I stumbled upon a great website (actually I found it on the google ads in gmail!) with comprehensive and deep information on embedded systems. The website talks about four main categories in embedded systems:

1) Embedded Systems Design.

2) Design Life cycle.

3) Design Methods.

4) Design Tools.

What I found special about this website is that when browse through the systems design section, you usually find a...

## Hidden Linear Algebra in DSP

June 17, 20105 comments

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...

## Unit Testing for Embedded Algorithms

December 21, 2009

Happy Holidays! For my premier article, I am writing about my favorite technique to use when designing and developing software- unit testing. Unit testing is a best practice when designing software. It allows the designer to verify the behavior of the software units before the entire system is complete, and it facilitates the change and growth of the software system because the developer can verify that the changes will not affect the behavior of other parts of the system. I have used...

## Deesspee #5

September 16, 20091 comment
Deesspee #5 - Computers

## Matlab Programming Contest

November 10, 2010

Every 6 months Mathworks hosts an online Matlab programming contest.  If you love or hate Matlab check out the contest.  The group does a really good job putting together the puzzles.  The contest runs for a week and starts today at noon EST (10 Nov 2010).

If you are an experienced Matlab programmer or new to Matlab it is worth checking out.  Even if you do not intend on submitting solutions.  Also, the problems / puzzles only require the base Matlab...

## Compressive Sensing - Recovery of Sparse Signals (Part 1)

November 28, 2015

The amount of data that is generated has been increasing at a substantial rate since the beginning of the digital revolution. The constraints on the sampling and reconstruction of digital signals are derived from the well-known Nyquist-Shannon sampling theorem...

## Analytic Signal

November 26, 20155 comments

In communication theory and modulation theory we always deal with two phases: In-phase (I) and Quadrature-phase (Q). The question that I will discuss in this blog is that why we use two phases and not more.

## Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

July 20, 2017
Introduction

This is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.

In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...

## Improved Three Bin Exact Frequency Formula for a Pure Real Tone in a DFT

November 6, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by extending the exact two bin formulas for the frequency of a real tone in a DFT to the three bin case. This article is a direct extension of my prior article "Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT"[1]. The formulas derived in the previous article are also presented in this article in the computational order, rather than the indirect order they were...

## State Space Representation and the State of Engineering Thinking

November 23, 20102 comments

Most, if not all, textbooks in signal processing (SP) thoroughly covers the frequency analysis of signals and systems alike, including the Fourier and the Z-transform that produce the well known Transfer Function. Another way of signal analysis, not as popular in signal processing though, is State Space representation. State space models describes the internal signals of the system or the process and how it affect the output, in contrast to the frequency representation that only describe the...

## Digging into an Audio Signal and the DSP Process Pipeline

March 9, 20206 comments
In this post, I'll look at the benefits of using multiple perspectives when handling signals.A Pre-existing Audio File

Let's say we have an audio file of interest. Let's load it into Audacity and zoom in a little (using View → Zoom → Zoom In, multiple times). The figure illustrates the audio signal: just a basic single-tone signal.

By continuing to zoom into the signal, we eventually get to the point of seeing individual samples as illustrated below. Notice that I've marked one...

## Candan's Tweaks of Jacobsen's Frequency Approximation

November 11, 2022
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by explaining how a tweak to a well known frequency approximation formula makes it better, and another tweak makes it exact. The first tweak is shown to be the first of a pattern and a novel approximation formula is made from the second. It only requires a few extra calculations beyond the original approximation to come up with an approximation suitable for most...

## A Recipe for a Basic Trigonometry Table

October 4, 2022
Introduction

This is an article that is give a better understanding to the Discrete Fourier Transform (DFT) by showing how to build a Sine and Cosine table from scratch. Along the way a recursive method is developed as a tone generator for a pure tone complex signal with an amplitude of one. Then a simpler multiplicative one. Each with drift correction factors. By setting the initial values to zero and one degrees and letting it run to build 45 values, the entire set of values needed...

## Fibonacci trick

October 10, 20164 comments

I'm working on a video, tying the Fibonacci sequence into the general subject of difference equations.

Here's a fun trick: take any two consecutive numbers in the Fibonacci sequence, say 34 and 55.  Now negate one and use them as the seed for the Fibonacci sequence, larger magnitude first, i.e.

$-55, 34, \cdots$

Carry it out, and you'll eventually get the Fibonacci sequence, or it's negative:

$-55, 34, -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1 \cdots$

This is NOT a general property of difference...