State Space Representation and the State of Engineering Thinking
Most, if not all, textbooks in signal processing (SP) thoroughly covers the frequency analysis of signals and systems alike, including the Fourier and the Z-transform that produce the well known Transfer Function. Another way of signal analysis, not as popular in signal processing though, is State Space representation. State space models describes the internal signals of the system or the process and how it affect the output, in contrast to the frequency representation that only describe the...
Matlab Programming Contest
Every 6 months Mathworks hosts an online Matlab programming contest. If you love or hate Matlab check out the contest. The group does a really good job putting together the puzzles. The contest runs for a week and starts today at noon EST (10 Nov 2010).
If you are an experienced Matlab programmer or new to Matlab it is worth checking out. Even if you do not intend on submitting solutions. Also, the problems / puzzles only require the base Matlab...
Discrete Wavelet Transform Filter Bank Implementation (part 1)
UPDATE: Added graphs and code to explain the frequency division of the branches
The focus of this article is to briefly explain an implementation of this transform and several filter bank forms. Theoretical information about DWT can be found elsewhere.
First of all, a 'quick and dirty' simplified explanation of the differences between DFT and DWT:
The DWT (Discrete Wavelet Transform), simply put, is an operation that receives a signal as an input (a vector of data) and...
Least-squares magic bullets? The Moore-Penrose Pseudoinverse
Hello,
the topic of this brief article is a tool that can be applied to a variety of problems: The Moore-Penrose Pseudoinverse.While maybe not exactly a magic bullet, it gives us least-squares optimal solutions, and that is under many circumstances the best we can reasonably expect.
I'll demonstrate its use on a short example. More details can be found for example on Wikipedia, or the Matlab documentation...
Understanding Radio Frequency Distortion
OverviewThe topic of this article are the effects of radio frequency distortions on a baseband signal, and how to model them at baseband. Typical applications are use as a simulation model or in digital predistortion algorithms.
IntroductionTransmitting and receiving wireless signals usually involves analog radio frequency circuits, such as power amplifiers in a transmitter or low-noise amplifiers in a receiver.Signal distortion in those circuits deteriorates the link quality. When...
Knowledge Mine for Embedded Systems
I stumbled upon a great website (actually I found it on the google ads in gmail!) with comprehensive and deep information on embedded systems. The website talks about four main categories in embedded systems:
1) Embedded Systems Design.
2) Design Life cycle.
3) Design Methods.
4) Design Tools.
What I found special about this website is that when browse through the systems design section, you usually find a...
Hidden Linear Algebra in DSP
Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.
An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...
Unit Testing for Embedded Algorithms
Happy Holidays! For my premier article, I am writing about my favorite technique to use when designing and developing software- unit testing. Unit testing is a best practice when designing software. It allows the designer to verify the behavior of the software units before the entire system is complete, and it facilitates the change and growth of the software system because the developer can verify that the changes will not affect the behavior of other parts of the system. I have used...
Frequency Dependence in Free Space Propagation
Introduction
It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:
Pr = Pt Gt Gr ( λ / 4πd )2 (1)
where the...
Determination of the transfer function of passive networks with MATLAB Functions
With MATLAB functions, the transfer function of passive networks can be determined relatively easily. The method is explained using the example of a passive low-pass filter of the sixth order, which is shown in Fig.1
Fig.1 Passive low-pass filter of the sixth order
If one tried, as would be logical, to calculate the transfer function starting from the input, it would be quite complicated. On the other hand, if you start from the output, the determination of this function is simple...
Analytic Signal
In communication theory and modulation theory we always deal with two phases: In-phase (I) and Quadrature-phase (Q). The question that I will discuss in this blog is that why we use two phases and not more.
Compressive Sensing - Recovery of Sparse Signals (Part 1)
The amount of data that is generated has been increasing at a substantial rate since the beginning of the digital revolution. The constraints on the sampling and reconstruction of digital signals are derived from the well-known Nyquist-Shannon sampling theorem...
Exact Near Instantaneous Frequency Formulas Best at Zero Crossings
IntroductionThis is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.
In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...
Smaller DFTs from bigger DFTs
IntroductionLet's consider the following hypothetical situation: You have a sequence $x$ with $N/2$ points and a black box which can compute the DFT (Discrete Fourier Transform) of an $N$ point sequence. How will you use the black box to compute the $N/2$ point DFT of $x$? While the problem may appear to be a bit contrived, the answer(s) shed light on some basic yet insightful and useful properties of the DFT.
On a related note, the reverse problem of computing an $N$...
A Free DSP Laboratory
Getting Started In Audio DSPImagine you're starting out studying DSP and your particular interest is audio. Wouldn't it be nice to have access to some audio signals and the tools to analyze and modify them? In the old days, a laboratory like this would most likely have cost a lot of time and money to set up. Nowadays, it doesn't have to be like this. The magic of open source software makes it quite straightforward to build yourself a simple audio DSP laboratory – just use the brilliant...
A brief look at multipath radio channels
Summary: Discussion of multipath propagation and fading in radio links
Radio channels, their effects on communications links and how to model them are a popular topic on comp.dsp. Unfortunately, for many of us there is little or no opportunity to get any "hands-on" experience with radio-related issues, because the required RF measurement equipment is not that easily available.This article gives a very simple example of a radio link that shows multipath propagation and...
Correlation without pre-whitening is often misleading
White LiesCorrelation, as one of the first tools DSP users add to their tool box, can automate locating a known signal within a second (usually larger) signal. The expected result of a correlation is a nice sharp peak at the location of the known signal and few, if any, extraneous peaks.
A little thought will show this to be incorrect: correlating a signal with itself is only guaranteed to give a sharp peak if the signal's samples are uncorrelated --- for example if the signal is composed...
Finding the Best Optimum
When I was in school learning electrical engineering I owned a large mental pot, full of simmering resentment against the curriculum as it was being taught.
It really started in my junior year, when we took Semiconductor Devices, or more accurately "how to build circuits using transistors". I had been seduced by the pure mathematics of sophomore EE courses, where all the circuit elements (resistors, capacitors, coils and -- oh the joy -- dependent sources) are ideally modeled, and the labs...
State Space Representation and the State of Engineering Thinking
Most, if not all, textbooks in signal processing (SP) thoroughly covers the frequency analysis of signals and systems alike, including the Fourier and the Z-transform that produce the well known Transfer Function. Another way of signal analysis, not as popular in signal processing though, is State Space representation. State space models describes the internal signals of the system or the process and how it affect the output, in contrast to the frequency representation that only describe the...
Compressive Sensing - Recovery of Sparse Signals (Part 1)
The amount of data that is generated has been increasing at a substantial rate since the beginning of the digital revolution. The constraints on the sampling and reconstruction of digital signals are derived from the well-known Nyquist-Shannon sampling theorem...
Analytic Signal
In communication theory and modulation theory we always deal with two phases: In-phase (I) and Quadrature-phase (Q). The question that I will discuss in this blog is that why we use two phases and not more.
Exact Near Instantaneous Frequency Formulas Best at Zero Crossings
IntroductionThis is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.
In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...
State Space Representation and the State of Engineering Thinking
Most, if not all, textbooks in signal processing (SP) thoroughly covers the frequency analysis of signals and systems alike, including the Fourier and the Z-transform that produce the well known Transfer Function. Another way of signal analysis, not as popular in signal processing though, is State Space representation. State space models describes the internal signals of the system or the process and how it affect the output, in contrast to the frequency representation that only describe the...
Improved Three Bin Exact Frequency Formula for a Pure Real Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by extending the exact two bin formulas for the frequency of a real tone in a DFT to the three bin case. This article is a direct extension of my prior article "Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT"[1]. The formulas derived in the previous article are also presented in this article in the computational order, rather than the indirect order they were...
Digging into an Audio Signal and the DSP Process Pipeline
In this post, I'll look at the benefits of using multiple perspectives when handling signals.A Pre-existing Audio FileLet's say we have an audio file of interest. Let's load it into Audacity and zoom in a little (using View → Zoom → Zoom In, multiple times). The figure illustrates the audio signal: just a basic single-tone signal.
By continuing to zoom into the signal, we eventually get to the point of seeing individual samples as illustrated below. Notice that I've marked one...
Fibonacci trick
I'm working on a video, tying the Fibonacci sequence into the general subject of difference equations.
Here's a fun trick: take any two consecutive numbers in the Fibonacci sequence, say 34 and 55. Now negate one and use them as the seed for the Fibonacci sequence, larger magnitude first, i.e.
$-55, 34, \cdots$
Carry it out, and you'll eventually get the Fibonacci sequence, or it's negative:
$-55, 34, -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1 \cdots$
This is NOT a general property of difference...
Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)
IntroductionThis is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.
A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...
Smaller DFTs from bigger DFTs
IntroductionLet's consider the following hypothetical situation: You have a sequence $x$ with $N/2$ points and a black box which can compute the DFT (Discrete Fourier Transform) of an $N$ point sequence. How will you use the black box to compute the $N/2$ point DFT of $x$? While the problem may appear to be a bit contrived, the answer(s) shed light on some basic yet insightful and useful properties of the DFT.
On a related note, the reverse problem of computing an $N$...
An Alternative Form of the Pure Real Tone DFT Bin Value Formula
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving alternative exact formulas for the bin values of a real tone in a DFT. The derivation of the source equations can be found in my earlier blog article titled "DFT Bin Value Formulas for Pure Real Tones"[1]. The new form is slighty more complicated and calculation intensive, but it is more computationally accurate in the vicinity of near integer frequencies. This...