Adventures in Signal Processing with Python
Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being...
Python scipy.signal IIR Filtering: An Example
Introduction In the last posts I reviewed how to use the Python scipy.signal package to design digital infinite impulse response (IIR) filters, specifically, using the iirdesign function (IIR design I and IIR design...
Polyphase Filters and Filterbanks
ALONG CAME POLY Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling...
Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved
This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator....
Understanding and Relating Eb/No, SNR, and other Power Efficiency Metrics
Introduction Evaluating the performance of communication systems, and wireless systems in particular, usually involves quantifying some performance metric as a function of Signal-to-Noise-Ratio (SNR) or some similar measurement. Many systems...
Python scipy.signal IIR Filter Design
Introduction The following is an introduction on how to design an infinite impulse response (IIR) filters using the Python scipy.signal package. This post, mainly, covers how to use the scipy.signal package and is not a thorough...
Python number crunching faster? Part I
Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this...
Bank-switched Farrow resampler
Bank-switched Farrow resampler Summary A modification of the Farrow structure with reduced computational complexity.Compared to a conventional design, the impulse response is broken into a higher number of segments. Interpolation accuracy is...
A Fixed-Point Introduction by Example
Introduction The finite-word representation of fractional numbers is known as fixed-point. Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation. It...
Discrete Wavelet Transform Filter Bank Implementation (part 2)
Following the previous blog entry: http://www.dsprelated.com/showarticle/115.php Difference between DWT and DWPT Before getting to the equivalent filter obtention, I first want to talk about the difference between DWT(Discrete Wavelet...
Generating pink noise
In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music. The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple...
Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter
Other articles in this series: Part 1: Russian Peasant Multiplication Part 2: The Single-Pole Low-Pass Filter Part 3: Welford’s Method (And Friends) Part 4: Topological Sort I’m writing this article in a room with a bunch of...
Hello and Introduction
Hello all.I would like to take this chance to talk a little about what I am going to try and do in this blog. While working in the field, I have come across some interesting techniques. It has, at times, taken some time and effort to understand...
Delay estimation by FFT
Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippet This article relates to the Matlab / Octave code snippet: Delay estimation with...
Frequency Dependence in Free Space Propagation
IntroductionIt seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss...
Multiplierless Half-band Filters and Hilbert Transformers
This article provides coefficients of multiplierless Finite Impulse Response 7-tap, 11-tap, and 15-tap half-band filters and Hilbert Transformers. Since Hilbert transformer coefficients are simply related to half-band coefficients, multiplierless Hilbert transformers are easily derived from multiplierless half-bands.
Overview of my Articles
Introduction This article is a summary of all the articles I've written here at DspRelated. The main focus has always been an increased understanding of the Discrete Fourier Transform (DFT). The references are grouped by topic and ordered in...
Candan's Tweaks of Jacobsen's Frequency Approximation
Introduction This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by explaining how a tweak to a well known frequency approximation formula makes it better, and another tweak makes it exact. The...
Somewhat Off Topic: Deciphering Transistor Terminology
I recently learned something mildly interesting about transistors, so I thought I'd share my new knowledge with you folks. Figure 1 shows a p-n-p transistor comprising a small block of n-type semiconductor sandwiched between two blocks of p-type...
Project Report : Digital Filter Blocks in MyHDL and their integration in pyFDA
The Google Summer of Code 2018 is now in its final stages, and I’d like to take a moment to look back at what goals were accomplished, what remains to be completed and what I have learnt. The project overview was discussed in the previous blog...