
Gauss-Newton Based Learning for Fully Recurrent Neural Networks
The thesis discusses a novel off-line and on-line learning approach for Fully Recurrent Neural Networks (FRNNs). The most popular algorithm for training FRNNs, the Real Time Recurrent Learning (RTRL) algorithm, employs the gradient descent technique for finding the optimum weight vectors in the recurrent neural network. Within the framework of the research presented, a new off-line and on-line variation of RTRL is presented, that is based on the Gauss-Newton method. The method itself is an approximate Newton’s method tailored to the specific optimization problem, (non-linear least squares), which aims to speed up the process of FRNN training. The new approach stands as a robust and effective compromise between the original gradient-based RTRL (low computational complexity, slow convergence) and Newton-based variants of RTRL (high computational complexity, fast convergence). By gathering information over time in order to form Gauss-Newton search vectors, the new learning algorithm, GN-RTRL, is capable of converging faster to a better quality solution than the original algorithm. Experimental results reflect these qualities of GN-RTRL, as well as the fact that GN-RTRL may have in practice lower computational cost in comparison, again, to the original RTRL.

Design of a Scalable Polyphony-MIDI Synthesizer for a Low Cost DSP
In this thesis, the design of a music synthesizer implementing the Scalable Polyphony-MIDI soundset on a low cost DSP system is presented. First, the SP-MIDI standard and the target DSP platform are presented followed by review of commonly used synthesis techniques and their applicability to systems with limited computational and memory resources. Next, various oscillator and filter algorithms used in digital subtractive synthesis are reviewed in detail. Special attention is given to the aliasing problem caused by discontinuities in classical waveforms, such as sawtooth and pulse waves and existing methods for bandlimited waveform synthesis are presented. This is followed by review of established structures for computationally efficient time-varying filters. A novel digital structure is presented that decouples the cutoff and resonance controls. The new structure is based on the analog Korg MS-20 lowpass filter and is computationally very efficient and well suited for implementation on low bitdepth architectures. Finally, implementation issues are discussed with emphasis on the Differentiated Parabole Wave oscillator and MS-20 filter structures and the effects of limited computational capability and low bitdepth. This is followed by designs for several example instruments.

Implementation of a Tx/Rx OFDM System in a FPGA
The aim of this project consists in the FPGA design and implementation of a transmitter and receiver (Tx/Rx) multicarrier system such the Orthogonal Frequency Division Multiplexing (OFDM). This Tx/Rx OFDM subsystem is capable to deal with with different M-QAM modulations and is implemented in a digital signal processor (DSP-FPGA). The implementation of the Tx/Rx subsystem has been carried out in a FPGA using both System Generator visual programming running over Matlab/Simulink, and the Xilinx ISE program which uses VHDL language. This project is divided into four chapters, each one with a concrete objective. The first chapter is a brief introduction to the digital signal processor used, a field-programmable gate array (FPGA), and to the VHDL programming language. The second chapter is an overview on OFDM, its main advantages and disadvantages in front of previous systems, and a brief description of the different blocks composing the OFDM system. Chapter three provides the implementation details for each of these blocks, and also there is a brief explanation on the theory behind each of the OFDM blocks to provide a better comprehension on its implementation. The fourth chapter is focused, on the one hand, in showing the results of the Matlab/Simulink simulations for the different simulation schemes used and, on the other hand, to show the experimental results obtained using the FPGA to generate the OFDM signal at baseband and then upconverted at the frequency of 3,5 GHz. Finally the conclusions regarding the whole Tx/Rx design and implementation of the OFDM subsystem are given.

A Multimedia DSP processor design
This Master Thesis presents the design of the core of a fixed point general purpose multimedia DSP processor (MDSP) and its instruction set. This processor employs parallel processing techniques and specialized addressing models to speed up the processing of multimedia applications. The MDSP has a dual MAC structure with one enhanced MAC that provides a SIMD, Single Instruction Multiple Data, unit consisting of four parallel data paths that are optimized for accelerating multimedia applications. The SIMD unit performs four multimedia-oriented 16-bit operations every clock cycle. This accelerates computationally intensive procedures such as video and audio decoding. The MDSP uses a memory bank of four memories to provide multiple accesses of source data each clock cycle.

Implementation of Uncoordinated Direct Sequence Spread Spectrum using Software Defined Radios
One of the major threats to wireless communications is jamming. Many anti-jamming techniques have been presented in the past. However most of them are based on the precondition that the communicating devices have a pre-shared secret that can be used to synchronize the anti-jamming scheme. E.g. for frequency hopping the secret could be used to derive the hopping sequence and for direct sequence spread spectrum the secret is used to derive the spreading codes. But how can the devices bootstrap a jamming-resistant communication without having a pre-shared secret? Christina Popper and Mario Strasser propose as scheme for Uncoordinated Frequency Hopping (UFH) and Uncoordinated Direct Sequence Spread Spectrum (UDSSS) in their papers [1] and [2] respectively. The goal of my project was an implementation of Uncoordinated Direct Sequence Spread Spectrum (UDSSS) using Software Dened Radios. The First version should serve as an easy to use and extendable proof of conceptfor the proposed scheme.

Algorithms and tools for automatic generation of DSP hardware structures
The increased complexity of Digital Signal Processing (DSP) algorithms demands for the development of more complex and more efficient hardware structures. The work presented herein describes the core components for the development of a tool capable of automatic generation of efficient hardware structures, therefore facilitating developers work. It comprises algorithms and techniques for i) balancing the paths in a graph, ii) scheduling of operations to functional units, iii) allocating registers and iv) generating the VHDL code. Results show that the developed techniques are capable of generating the hardware structure of typical DSP algorithms represented in data-flow graphs with over 2,000 nodes in around 200 ms, scaling to 80,000 nodes in about 214 s. Within the developed techniques, solving the scheduling problem is one of the most complex tasks: it is a NP-complete problem and directly influences the number of functional units and registers required. Therefore, experimental analysis was made on scheduling algorithms for time-constrained problems. Results show that simple list-based algorithms are more efficient in large problems than more complex algorithms: they run faster and tend to require less functional units.

High speed data collection with Blackfin DSP
This report covers a master thesis in embedded systems, the goal of which was to investigate the high speed data collection capabilities with a Blackfin DSP. Basic theory about sampling and noise is covered briefly from a practical point of view. The theory is intended to be useful for those diving into a ADC datasheet for the first time. After an investigation of the delimiting factors, suitable components were selected and a prototype ADC PCB was designed from scratch. The goal is to design a general low noise data collecting unit compatible with the Blackfin DSP. Finally simple DSP software is designed to prove that DSP can handle such a high datastream.Testing the ADC card with the target Blackfin platform indicates thatthe analog parts indeed works. An analog bandwidth of over 10MHz ismeasured at a resolution exceeding 10 bits with respect to noise. The digital parts intended to interleave the two channels digital streams into one Blackfin unit did not work as intended. Only one channel is supported as of now. The report contains suggestions for future work in this area.

Active Noise Control of a Forest Machine Cabin
Today, a high noise level is considered a problem in many working environments. The main reason is that it contributes to stress and fatigue. Traditional methods using passive noise control is only practicable for high frequencies. As a complement to passive noise control, active noise control (ANC) can be used to reduce low frequency noise. The main idea of ANC is to use destructive interference of waves to cancel disturbing noises. The purpose of this thesis is to design and implement an ANC system in the driver's cabin of a Valmet 890 forest machine. The engine boom is one of the most disturbing noises and therefore the main subjective for the ANC system to suppress. The ANC system is implemented on a Texas Instrument DSP development starter kit. Different FxLMS algorithms are evaluated with feedback and feedforward configurations. The results indicate that an ANC system significantly reduces the sound pressure level (SPL) in the cabin. Best performance of the evaluated systems is achieved for the feedforward FxLMS system. For a commonly used engine speed of 1500 rpm, the SPL is reduced with 17 dB. The results show fast enough convergence and global suppression of low frequency noise.

Evaluation of a Floating Point Acoustic Echo Canceller Implementation
This master thesis consists of implementation and evaluation of an AEC, Acoustic Echo Canceller, algorithm in a floating-point architecture. The most important question this thesis will try to answer is to determine benefits or drawbacks of using a floating-point architecture, relative a fixed-point architecture, to do AEC. In a telephony system there is two common forms of echo, line echo and acoustic echo. Acoustic echo is introduced by sound emanating from a loudspeaker, e.g. in a handsfree or speakerphone, being picked up by a microphone and then sent back to the source. The problem with this feedback is that the far-end speaker will hear one, or multiple, time-delayed version(s) of her own speech. This time-delayed version of speech is usually perceived as both confusing and annoying unless removed by the use of AEC. In this master thesis the performance of a floating-point version of a normalized least-mean-square AEC algorithm was evaluated in an environment designed and implemented to approximate live telephony calls. An instruction-set simulator and assembler available at the initiation of this master thesis were extended to enable; zero-overhead loops, modular addressing, post-increment of registers and register-write forwarding. With these improvements a bit-true assembly version was implemented capable of real-time AEC requiring 15 million instructions per second. A solution using as few as eight mantissa bits, in an external format used when storing data in memory, was found to have an insignificant effect on the selected AEC implementation’s performance. Due to the relatively low memory requirement of the selected AEC algorithm, the use of a small external format has a minor effect on the required memory size. In total this indicates that the possible reduction of the memory requirement and related energy consumption, does not justify the added complexity and energy consumption of using a floating-point architecture for the selected algorithm. Use of a floating-point format can still be advantageous in speech-related signal processing when the introduced time delay by a subband, or a similar frequency domain, solution is unacceptable. Speech algorithms that have high memory use and small introduced delay requirements are a good candidate for a floating-point digital signal processor architecture.

Decoding Ogg Vorbis Audio with The C6416 DSP, using a custom made MDCT core on FPGA
Ogg Vorbis is a fairly new and growing audio format, often used for online distribution of music and internet radio stations for streaming audio. It is considered to be better than MP3 in both quality and compression and in the same league as for example AAC. In contrast with many other formats, like MP3 and AAC, Ogg Vorbis is patent and royalty free. The purpose of this thesis project was to investigate how the C6416 DSP processor and a Stratix II FPGA could be connected to each other and work together as co-processors and using an Ogg Vorbis decoder as implementation example. A fixed-point decoder called Tremor (developed by Xiph.Org the creator of the Vorbis I specification), has been ported to the DSP processor and an Ogg Vorbis player has been developed. Tremor was profiled before performing the software / hardware partitioning to decide what parts of the source code of Tremor that should be implemented in the FPGA to off-load and accelerate the DSP.

Implementation of a Tx/Rx OFDM System in a FPGA
The aim of this project consists in the FPGA design and implementation of a transmitter and receiver (Tx/Rx) multicarrier system such the Orthogonal Frequency Division Multiplexing (OFDM). This Tx/Rx OFDM subsystem is capable to deal with with different M-QAM modulations and is implemented in a digital signal processor (DSP-FPGA). The implementation of the Tx/Rx subsystem has been carried out in a FPGA using both System Generator visual programming running over Matlab/Simulink, and the Xilinx ISE program which uses VHDL language. This project is divided into four chapters, each one with a concrete objective. The first chapter is a brief introduction to the digital signal processor used, a field-programmable gate array (FPGA), and to the VHDL programming language. The second chapter is an overview on OFDM, its main advantages and disadvantages in front of previous systems, and a brief description of the different blocks composing the OFDM system. Chapter three provides the implementation details for each of these blocks, and also there is a brief explanation on the theory behind each of the OFDM blocks to provide a better comprehension on its implementation. The fourth chapter is focused, on the one hand, in showing the results of the Matlab/Simulink simulations for the different simulation schemes used and, on the other hand, to show the experimental results obtained using the FPGA to generate the OFDM signal at baseband and then upconverted at the frequency of 3,5 GHz. Finally the conclusions regarding the whole Tx/Rx design and implementation of the OFDM subsystem are given.

A DSP-Based Computational Engine For a Brain-Machine Interface
The fields of neurobiology and electrical engineering have come together to pursue an integrated Brain-Machine Interface (BMI). Signal processing methods are used to find mapping algorithms between motor cortex neural firing rate and hand position. This cognitive extension could help patients with quadriplegia regain some independence using a thought-controlled robot arm. Current signal processing methods to achieve realtime neural-to-motor translation involve large, multi-processor systems to produce motor control parameters. Eventually, software running in a portable signal processing system is needed to allow for the patient to have the BMI in a backpack or attached to a wheelchair. This thesis presents a DSP-Based Computational Engine for a Brain-Machine Interface. The development of a DSP Board based on the Texas Instruments TMS320VC33 DSP will be presented, along with implementations of two digital filters and their training methods: 1) FIR trained with Normalized Least Mean Square Adaptive Filter (NLMS) and 2) Recurrent Multi-Layer Perceptron (RMLP) trained with Real-Time Recurrent Learning (RTRL). The requirements of the DSP Board, component selection and integration, and control software are discussed. The DSP implementations of the digital filters are presented, along with performance and timing analysis in real data collected from an Owl Monkey at Duke University. The weights of the FIR-NLMS filter converged similarly on the DSP as they did in MATLAB. Likewise, the weights of the RMLP-RTRL filter converged similarly on the DSP as they did using the Backpropagation Through Time method in NeuroSolutions. The custom DSP Board and two digital algorithms implemented in this thesis create a starting point for an integrated, portable, real-time signal processing solution for a Brain-Machine Interface.

DSP Platform Benchmarking
Benchmarking of DSP kernel algorithms was conducted in the thesis on a DSP processor for teaching in the course TESA26 in the department of Electrical Engineering. It includes benchmarking on cycle count and memory usage. The goal of the thesis is to evaluate the quality of a single MAC DSP instruction set and provide suggestions for further improvement in instruction set architecture accordingly. The scope of the thesis is limited to benchmark the processor only based on assembly coding. The quality check of compiler is not included. The method of the benchmarking was proposed by BDTI, Berkeley Design Technology Incorporations, which is the general methodology used in world wide DSP industry. Proposals on assembly instruction set improvements include the enhancement of FFT and DCT. The cycle cost of the new FFT benchmark based on the proposal was XX% lower, showing that the proposal was right and qualified. Results also show that the proposal promotes the cycle cost score for matrix computing, especially matrix multiplication. The benchmark results were compared with general scores of single MAC DSP processors offered by BDTI.

DSP Memory Management in a Third Generation High Performance Base Station
Most of the tasks in a mobile cellular network base station are performed with programmable digital signal processors. Their memory spaces and management features are very limited. The buffering requirements in the base station can have large instantaneous variations during the simultaneous transmission of burst' data on multiple channels to multiple users. In particular the high bit-rates of the Wideband Code Division Multiple Access data transfer evolution High Speed Downlink Packet Access create very high demands for buffering. The fragmentation of the buffer memory is a threat. It causes a gradual decrease in performance, which is critical in a long running process like the base station. The amount of fragmentation is different with different memory management methods. In this work the features and applicability of different memory management methods for signal processors used in the base stations of third generation cellular networks have been studied. Software based memory management includes a high amount of conditional branches. The signal processor, which is optimized for highly parallel sequential computing, executes conditional branches very badly when compared to microcontrollers and general-purpose processors. The memory management methods are first studied in theory and then experimentally. In the experiments two different memory management methods were analyzed. The memory managers were loaded with a synthetic workload program that simulates multi-user high bit-rate data transmissions in the base station. The performances of the memory managers were measured in terms of fragmentation, execution time and memory utilization. The experiments confirmed the information gained from the theoretical studies that different memory management methods are usually optimized for a certain feature. The experiments showed that a simple method is fast to execute and works well with small and intermediate loads. When the load is increased the performance decreases. The second, more complex, measured method was found to require more computing, but to be capable of using the memory space assigned to it more effectively.

Automatic Parallel Memory Address Generation for Parallel DSP Computing
The concept of Parallel Vector (scratch pad) Memories (PVM) was introduced as one solution for Parallel Computing in DSP, which can provides parallel memory addressing efficiently with minimum latency. The parallel programming more efficient by using the parallel addressing generator for parallel vector memory (PVM) proposed in this thesis. However, without hiding complexities by cache, the cost of programming is high. To minimize the programming cost, automatic parallel memory address generation is needed to hide the complexities of memory access. This thesis investigates methods for implementing conflict-free vector addressing algorithms on a parallel hardware structure. In particular, match vector addressing requirements extracted from the behaviour model to a prepared parallel memory addressing template, in order to supply data in parallel from the main memory to the on-chip vector memory. According to the template and usage of the main and on-chip parallel vector memory, models for data pre-allocation and permutation in scratch pad memories of ASIP can be decided and configured. By exposing the parallel memory access of source code, the memory access flow graph (MFG) will be generated. Then MFG will be used combined with hardware information to match templates in the template library. When it is matched with one template, suited permutation equation will be gained, and the permutation table that include target addresses for data pre-allocation and permutation is created. Thus it is possible to automatically generate memory address for parallel memory accesses. A tool for achieving the goal mentioned above is created, Permutator, which is implemented in C++ combined with XML. Memory access coding template is selected, as a result that permutation formulas are specified. And then PVM address table could be generated to make the data pre-allocation, so that efficient parallel memory access is possible. The result shows that the memory access complexities is hiden by using Permutator, so that the programming cost is reduced.It works well in the context that each algorithm with its related hardware information is corresponding to a template case, so that extra memory cost is eliminated.

Implementation of Uncoordinated Direct Sequence Spread Spectrum using Software Defined Radios
One of the major threats to wireless communications is jamming. Many anti-jamming techniques have been presented in the past. However most of them are based on the precondition that the communicating devices have a pre-shared secret that can be used to synchronize the anti-jamming scheme. E.g. for frequency hopping the secret could be used to derive the hopping sequence and for direct sequence spread spectrum the secret is used to derive the spreading codes. But how can the devices bootstrap a jamming-resistant communication without having a pre-shared secret? Christina Popper and Mario Strasser propose as scheme for Uncoordinated Frequency Hopping (UFH) and Uncoordinated Direct Sequence Spread Spectrum (UDSSS) in their papers [1] and [2] respectively. The goal of my project was an implementation of Uncoordinated Direct Sequence Spread Spectrum (UDSSS) using Software Dened Radios. The First version should serve as an easy to use and extendable proof of conceptfor the proposed scheme.

Active control of automobile cabin noise with conventional and advanced speakers
Recently much research has focused on the control of enclosed sound fields, particularly in automobiles. Both Active Noise Control (ANC) and Active Structural Acoustic Control (ASAC) techniques are being applied to problems stemming from power train noise and road noise (noise due to the interaction of the tires with the surface of the road). Due to the low frequency characteristics of these noise problems, large acoustic sources are required to obtain efficient control of the sound field. This creates demand in the automobile industry for compact lightweight sources. This work is concerned with the application of active control to power train noise, as well as road noise in the interior cabin of a sport utility vehicle using advanced, compact lightweight piezoelectric acoustic sources. First, a test structure approximately the same size as the automobile was built to study the principles of active noise control in a cavity. A finite element model of the cavity was created in order to optimize the positions of the error sensors and the control sources. Experimental work was performed with the optimized actuator and sensor locations in order to validate the model, and draw conclusions regarding the conditions to obtain global control of the sound field. Second, a broad-band feedforward filtered-X LMS algorithm was used to control power train noise. Preliminary power train noise tests were conducted using arrangements of four microphones and up to four commercially available speakers for control. Attenuation of seven decibel (dB) at the error sensors was measured in the 40-500 Hz frequency band. The dimensions of the zone of quiet generated by the control were measured, and show that noise reductions were obtained for a large volume surrounding the error sensors. Next, advanced speakers were implemented for active control of power train noise. The results obtained with different arrangements of these speakers were very similar to those obtained with the commercially-available speakers. These advanced speakers use piezoelectric devices to induce the displacement of a speaker membrane, which radiates sound. Their lighter weight and compact dimensions are a significant advantage over conventional speakers, for their application in automobile. Third, preliminary results were obtained for active control of road noise. The controller used an optimized set of four reference signals to control the noise at one error sensor using one control source. Two sets of tests were conducted. The first set of tests was performed on a dynamometer, which simulates the effects of the road on the tires. The second set of tests was performed on a rough road. Reduction of two to four decibel of the sound pressure level at the error sensor was obtained between 100 and 200 Hz.

Development of a real time test platform for motor drive algorithms
In this thesis a real time test platform for a permanent magnet synchronous motor is developed. The implemented algorithm is Field Oriented Control (FOC) and it is implemented on a Texas Instruments TMS320F2808 Digital Signal Processor (DSP). The platform is developed in a rapid prototyping approach using Matlab/Simulink and the Real Time Workshop (RTW) packages.With this software the control algorithm and its interface to different DSP modules, such as A/D converter and PWM module, is constructed as a Simulink block scheme. The blocks used come from ordinary Simulink libraries and libraries provided by the RTW packages. From the Simulink block scheme Matlab can auto generate embedded C code adapted for different embedded targets, in this case the 2808 DSP.The developed real time test platform is also a Simulink model, though different from the algorithm model. When the start simulation command is given in the platform model a Graphical User Interface is loaded which lets the user specify motor parameters and certain algorithm parameters. Once the parameters are chosen RTW generates code from the algorithm model, loads it into the DSP and runs the generated program. From the platform model it is possible to set the reference speed of the motor in real time and monitor/log motor parameters such as actual speed and stator currents.

Benchmarking a DSP processor
This Master thesis describes the benchmarking of a DSP processor. Benchmarking means measuring the performance in some way. In this report, we have focused on the number of instruction cycles needed to execute certain algorithms. The algorithms we have used in the benchmark are all very common in signal processing today. The results we have reached in this thesis have been compared to benchmarks for other processors, performed by Berkeley Design Technology, Inc. The algorithms were programmed in assembly code and then executed on the instruction set simulator. After that, we proposed changes to the instruction set, with the aim to reduce the execution time for the algorithms. The results from the benchmark show that our processor is at the same level as the ones tested by BDTI. Probably would a more experienced programmer be able to reduce the cycle count even more, especially for some of the more complex benchmarks.

Automated Accident Detection in Intersections Via Digital Audio Signal Processing
The aim of this thesis is to design a system for automated accident detection in intersections. The input to the system is a three-second audio signal. The system can be operated in two modes: two-class and multi-class. The output of the two-class system is a label of “crash” or “non-crash”. In the multi-class system, the output is the label of “crash” or various non-crash incidents including “pile drive”, “brake”, and “normal-traffic” sounds. The system designed has three main steps in processing the input audio signal. They are: feature extraction, feature optimization and classification. Five different methods of feature extraction are investigated and compared; they are based on the discrete wavelet transform, fast Fourier transform, discrete cosine transform, real cepstrum transform and Mel frequency cepstral transform. Linear discriminant analysis (LDA) is used to optimize the features obtained in the feature extraction stage by linearly combining the features using different weights. Three types of statistical classifiers are investigated and compared: the nearest neighbor, nearest mean, and maximum likelihood methods. Data collected from Jackson, MS and Starkville, MS and the crash signals obtained from Texas Transportation Institute crash test facility are used to train and test the designed system. The results showed that the wavelet based feature extraction method with LDA and maximum likelihood classifier is the optimum design. This wavelet-based system is computationally inexpensive compared to other methods. The system produced classification accuracies of 95% to 100% when the input signal has a signal-to-noise-ratio of at least 0 decibels. These results show that the system is capable of effectively classifying “crash” or “non-crash” on a given input audio signal.