Delay-Line Damping Filter Design
Let denote the desired reverberation time at radian frequency , and let denote the transfer function of the lowpass filter to be placed in series with the th delay line which is samples long. The problem we consider now is how to design these filters to yield the desired reverberation time. We will specify an ideal amplitude response for based on the desired reverberation time at each frequency, and then use conventional filter-design methods to obtain a low-order approximation to this ideal specification.
In accordance with Eq.(3.6), the lowpass filter in series with a length delay line should approximate
This is the same formula derived by Jot [217] using a somewhat different approach.
Now that we have specified the ideal delay-line filter in terms of its amplitude response in dB, any number of filter-design methods can be used to find a low-order which provides a good approximation to satisfying Eq.(3.9). Examples include the functions invfreqz and stmcb in Matlab. Since the variation in reverberation time is typically very smooth with respect to , the filters can be very low order.
First-Order Delay-Filter Design
The first-order case is very simple while enabling separate control of low-frequency and high-frequency reverberation times. For simplicity, let's specify and , denoting the desired decay-time at dc () and half the sampling rate ( ). Then we have determined the coefficients of a one-pole filter:
where denotes the th delay-line length in seconds. These two equations are readily solved to yield
The truncated series approximation
Orthogonalized First-Order Delay-Filter Design
In [217], first-order delay-line filters of the form
denotes the ratio of reverberation time at half the sampling rate divided by the reverberation time at dc.4.16
Multiband Delay-Filter Design
In §3.7.5, we derived first-order FDN delay-line filters which can independently set the reverberation time at dc and at half the sampling rate. However, perceptual studies indicate that reverberation time should be independently adjustable in at least three frequency bands [217]. To provide this degree of control (and more), one can implement a multiband delay-line filter using a general-purpose filter bank [370,500]. The output, say, of each delay line is split into bands, where is recommended, and then, from Eq.(3.6), the gain in the th band for a length delay-line can be set to
Next Section:
Spectral Coloration Equalizer
Previous Section:
Achieving Desired Reverberation Times