Some Observations on Comparing Efficiency in Communication Systems

Eric Jacobsen March 17, 2011
Introduction

Engineering is usually about managing efficiencies of one sort or another. One of my favorite working definitions of an engineer says, "An engineer is somebody who can do for a nickel what any damn fool can do for a dollar." In that case, the implication is that the cost is one of the characteristics being optimized. But cost isn't always the main efficiency metric, or at least the only one. Consider how a common transportation appliance, the automobile, is optimized...


A multiuser waterfilling algorithm

Markus Nentwig November 5, 20101 comment

Hello,this blog entry documents a code snippet for a multi-user waterfilling algorithm. It's heuristic and relatively straightforward, making it easy to implement additional constraints or rules.I rewrote parts of it to improve readability, but no extensive testing took place afterwards. Please double-check that it does what it promises.

Introduction to multiuser waterfilling.

Background information can be found for example in the presentation from Yosia Hadisusanto,


Radio Frequency Distortion Part II: A power spectrum model

Markus Nentwig October 11, 20101 comment
Summary

This article presents a ready-to-use model for nonlinear distortion caused by radio frequenfcy components in wireless receivers and linear transmitters. Compared to the similar model presented in my earlier blog entry, it operates on expectation values of the the power spectrum instead of the signal itself: Use the signal-based model to generate distortion on a signal, and the one from this article to directly obtain the power spectrum much more efficiently.In...


Understanding Radio Frequency Distortion

Markus Nentwig September 26, 20102 comments
Overview

The topic of this article are the effects of radio frequency distortions on a baseband signal, and how to model them at baseband. Typical applications are use as a simulation model or in digital predistortion algorithms.

Introduction

Transmitting and receiving wireless signals usually involves analog radio frequency circuits, such as power amplifiers in a transmitter or low-noise amplifiers in a receiver.Signal distortion in those circuits deteriorates the link quality. When...


Frequency Dependence in Free Space Propagation

Eric Jacobsen May 14, 20088 comments

Introduction

It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:

Pr = Pt Gt Gr ( λ / 4πd )2 (1)

where the...


Pulse Shaping in Single-Carrier Communication Systems

Eric Jacobsen April 10, 200833 comments

Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...


Handling Spectral Inversion in Baseband Processing

Eric Jacobsen February 11, 20089 comments

The problem of "spectral inversion" comes up fairly frequently in the context of signal processing for communication systems. In short, "spectral inversion" is the reversal of the orientation of the signal bandwidth with respect to the carrier frequency. Rick Lyons' article on "Spectral Flipping" at http://www.dsprelated.com/showarticle/37.php discusses methods of handling the inversion (as shown in Figure 1a and 1b) at the signal center frequency. Since most communication systems process...


A multiuser waterfilling algorithm

Markus Nentwig November 5, 20101 comment

Hello,this blog entry documents a code snippet for a multi-user waterfilling algorithm. It's heuristic and relatively straightforward, making it easy to implement additional constraints or rules.I rewrote parts of it to improve readability, but no extensive testing took place afterwards. Please double-check that it does what it promises.

Introduction to multiuser waterfilling.

Background information can be found for example in the presentation from Yosia Hadisusanto,


Radio Frequency Distortion Part II: A power spectrum model

Markus Nentwig October 11, 20101 comment
Summary

This article presents a ready-to-use model for nonlinear distortion caused by radio frequenfcy components in wireless receivers and linear transmitters. Compared to the similar model presented in my earlier blog entry, it operates on expectation values of the the power spectrum instead of the signal itself: Use the signal-based model to generate distortion on a signal, and the one from this article to directly obtain the power spectrum much more efficiently.In...


5G NR QC-LDPC Encoding Algorithm

Lyons Zhang September 10, 20192 comments

3GPP 5G has been focused on structured LDPC codes known as quasi-cyclic low-density parity-check (QC-LDPC) codes, which exhibit advantages over other types of LDPC codes with respect to the hardware implementations of encoding and decoding using simple shift registers and logic circuits.  

5G NR QC-LDPC  Circulant Permutation Matrix

A circular permutation matrix ${\bf I}(P_{i,j})$ of size $Z_c \times Z_c$ is obtained by circularly shifting the identity matrix $\bf I$ of...


There and Back Again: Time of Flight Ranging between Two Wireless Nodes

Qasim Chaudhari October 23, 20175 comments

With the growth in the Internet of Things (IoT) products, the number of applications requiring an estimate of range between two wireless nodes in indoor channels is growing very quickly as well. Therefore, localization is becoming a red hot market today and will remain so in the coming years.

One question that is perplexing is that many companies now a days are offering cm level accurate solutions using RF signals. The conventional wireless nodes usually implement synchronization...


Polar Coding Notes: Channel Combining and Channel Splitting

Lyons Zhang October 19, 20181 comment

Channel Combining  

Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.  

The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.  

The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...


GPS - some terminology!

Vivek Sankaravadivel October 30, 20153 comments

Hi!

For my first post, I will share some information about GPS - Global Positioning System. I will delve one step deeper than a basic explanation of how a GPS system works and introduce some terminology.

GPS, like we all know is the system useful for identifying one's position, velocity, & time using signals from satellites (referred to as SV or space vehicle in literature). It uses the principle of trilateration  (not triangulation which is misused frequently) for...


Polar Coding Notes: A Simple Proof

Lyons Zhang November 8, 2018

For any B-DMC $W$, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0, 1)$, as $N$ goes to infinity through powers of two, the fraction of indices $i \in \{1, \dots, N\}$ for which $I(W_N^{(i)}) \in (1 − \delta, 1]$ goes to $I(W)$ and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to $1−I(W)^{[1]}$.

Mrs. Gerber’s Lemma

Mrs. Gerber’s Lemma provides a lower bound on the entropy of the modulo-$2$ sum of two binary random...