Coefficients of Cascaded Discrete-Time Systems

Neil Robertson March 4, 2018

In this article, we’ll show how to compute the coefficients that result when you cascade discrete-time systems.  With the coefficients in hand, it’s then easy to compute the time or frequency response.  The computation presented here can also be used to find coefficients of mixed discrete-time and continuous-time systems, by using a discrete time model of the continuous-time portion [1].

This article is available in PDF format for...

Design IIR Filters Using Cascaded Biquads

Neil Robertson February 11, 2018
This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads.  We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix.  Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc).  As we’ll see, the cascaded-biquad design is less sensitive to coefficient...

Design IIR Highpass Filters

Neil Robertson February 3, 2018

This post is the fourth in a series of tutorials on IIR Butterworth filter design.  So far we covered lowpass [1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters.  The general approach, as before, has six steps:

Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the analog highpass filter (pre-warping). Transform the...

Design IIR Band-Reject Filters

Neil Robertson January 17, 2018

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis.  Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters.  Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies.   I’ll discuss the differences between the two approaches later in this...

Design IIR Bandpass Filters

Neil Robertson January 6, 20182 comments

In this post, I present a method to design Butterworth IIR bandpass filters.  My previous post [1] covered lowpass IIR filter design, and provided a Matlab function to design them.  Here, we’ll do the same thing for IIR bandpass filters, with a Matlab function bp_synth.m.  Here is an example function call for a bandpass filter based on a 3rd order lowpass prototype:

N= 3; % order of prototype LPF fcenter= 22.5; % Hz center frequency, Hz bw= 5; ...

Design IIR Butterworth Filters Using 12 Lines of Code

Neil Robertson December 10, 20176 comments

While there are plenty of canned functions to design Butterworth IIR filters [1], it’s instructive and not that complicated to design them from scratch.  You can do it in 12 lines of Matlab code.  In this article, we’ll create a Matlab function butter_synth.m to design lowpass Butterworth filters of any order.  Here is an example function call for a 5th order filter:

There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle

Neil Robertson October 23, 20179 comments
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane.  I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way.  I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix. 

This post is available in PDF format for easy...

Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects

Steve Maslen September 9, 2017
Some Design and Simulation Considerations for Sampled-Data Controllers

This article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.

Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples

Steve Maslen August 24, 2017
Developing and Validating Simulation Models

This article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.

Feedback Controllers - Making Hardware with Firmware. Part I. Introduction

Steve Maslen August 22, 2017
Introduction to the topic 

This is the 1st in a series of articles looking at how we can use DSP and Feedback Control Sciences along with some mixed-signal electronics and number-crunching capability (e.g. FPGA), to create arbitrary (within reason) Electrical/Electronic Circuits with real-world connectivity. Of equal importance will be the evaluation of the functionality and performance of a practical design made from modestly-priced state of the art devices.

  • Part 1: 

Delay estimation by FFT

Markus Nentwig September 22, 200745 comments
Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippet

This article relates to the Matlab / Octave code snippet: Delay estimation with subsample resolution It explains the algorithm and the design decisions behind it.


There are many DSP-related problems, where an unknown timing between two signals needs to be determined and corrected, for example, radar, sonar,...

Time Machine, Anyone?

Andor Bariska March 7, 20086 comments

Abstract: Dispersive linear systems with negative group delay have caused much confusion in the past. Some claim that they violate causality, others that they are the cause of superluminal tunneling. Can we really receive messages before they are sent? This article aims at pouring oil in the fire and causing yet more confusion :-).

PDF version of this article.


In this article we reproduce the results of a physical experiment...

TCP/IP interface (Matlab/Octave)

Markus Nentwig June 17, 201210 comments

Communicate with measurement instruments via Ethernet (no-toolbox-Matlab or Octave)


Measurement automation is digital signal processing in a wider sense: Getting a digital signal from an analog world usually involves some measurement instruments, for example a spectrum analyzer. Modern instruments, and also many off-the-shelf prototyping boards such as FPGA cards [1] or microcontrollers [2] are able to communicate via Ethernet. Here, I provide some basic mex-functions (compiled C...

Instantaneous Frequency Measurement

Parth Vakil February 5, 200820 comments

I would like to talk about the oft used method of measuring the carrier frequency in the world of Signal Collection and Characterization world. It is an elegant technique because of its simplicity. But, of course, with simplicity, there come drawbacks (sometimes...especially with this one!).

In the world of Radar detection and characterization, one of the key characteristics of interest is the carrier frequency of the signal. If the radar is pulsed, you will have a very wide bandwidth, a...

A poor man's Simulink

Markus Nentwig January 24, 20153 comments

Glue between Octave and NGSPICE for discrete- and continuous time cosimulation (download) Keywords: Octave, SPICE, Simulink


Many DSP problems have close ties with the analog world. For example, a switched-mode audio power amplifier uses a digital control loop to open and close power transistors driving an analog filter. There are commercial tools for digital-analog cosimulation: Simulink comes to mind, and mainstream EDA vendors support VHDL-AMS or Verilog-A in their...

Design of an anti-aliasing filter for a DAC

Markus Nentwig August 18, 2012
  • Octaveforge / Matlab design script. Download: here
  • weighted numerical optimization of Laplace-domain transfer function
  • linear-phase design, optimizes vector error (magnitude and phase)
  • design process calculates and corrects group delay internally
  • includes sinc() response of the sample-and-hold stage in the ADC
  • optionally includes multiplierless FIR filter
Problem Figure 1: Typical FIR-DAC-analog lowpass line-up

Digital-to-analog conversion connects digital...

Digital PLL's -- Part 1

Neil Robertson June 7, 201610 comments
1. Introduction

Figure 1.1 is a block diagram of a digital PLL (DPLL).  The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal.  The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance.  The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...

Spline interpolation

Markus Nentwig May 11, 20142 comments

A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog


Splines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...

Design study: 1:64 interpolating pulse shaping FIR

Markus Nentwig December 26, 20115 comments

This article is the documentation to a code snippet that originated from a discussion on comp.dsp.

The task is to design a root-raised cosine filter with a rolloff of a=0.15 that interpolates to 64x the symbol rate at the input.

The code snippet shows a solution that is relatively straightforward to design and achieves reasonably good efficiency using only FIR filters.

Motivation: “simple solutions?”

Discrete Wavelet Transform Filter Bank Implementation (part 2)

David December 5, 20109 comments

Following the previous blog entry:

Difference between DWT and DWPT

Before getting to the equivalent filter obtention, I first want to talk about the difference between DWT(Discrete Wavelet Transform) and DWPT (Discrete Wavelet Packet Transform). The latter is used mostly for image processing.

While DWT has a single "high-pass" branch that filters the signal with the h1 filter, the DWPT separates branches symmetricaly: this means that one...