Optimization of Synthesis Oversampled Complex Filter Banks
An important issue with oversampled FIR analysis filter banks (FBs) is to determine inverse synthesis FBs, when they exist. Given any complex oversampled FIR analysis FB, we first provide an algorithm to determine whether there exists an inverse FIR synthesis system. We also provide a method to ensure the Hermitian symmetry property on the synthesis side, which is serviceable to processing real-valued signals. As an invertible analysis scheme corresponds to a redundant decomposition, there is no unique inverse FB. Given a particular solution, we parameterize the whole family of inverses through a null space projection. The resulting reduced parameter set simplifies design procedures, since the perfect reconstruction constrained optimization problem is recast as an unconstrained optimization problem. The design of optimized synthesis FBs based on time or frequency localization criteria is then investigated, using a simple yet efficient gradient algorithm.
Hybrid Floating Point Technique Yields 1.2 Gigasample Per Second 32 to 2048 point Floating Point FFT in a single FPGA
Hardware Digital Signal Processing, especially hardware targeted to FPGAs, has traditionally been done using fixed point arithmetic, mainly due to the high cost associated with implementing floating point arithmetic. That cost comes in the form of increased circuit complexity. The increase circuit complexity usually also degrades maximum clock performance. Certain applications demand the dynamic range offered by floating point hardware, and yet require the speeds and circuit density usually associated with fixed point hardware. The Fourier transform is one DSP building block that frequently requires floating point dynamic range. Textbook construction of a pipelined floating point FFT engine capable of continuous input entails dozens of floating point adders and multipliers. The complexity of those circuits quickly exceeds the resources available on a single FPGA. This paper describes a technique that is a hybrid of fixed point and floating point operations designed to significantly reduce the overhead for floating point. The results are illustrated with an FFT processor that performs 32, 64, 128, 256, 512, 1024 and 2048 point Fourier transforms with IEEE single precision floating point inputs and outputs. The design achieves sufficient density to realize a continuous complex data rate of 1.2 Gigasamples per second data throughput using a single Virtex4-SX55-10 device.
Efficient Digital Fiilters
What would you do in the following situation? Let ’ s say you are diagnosing a DSP system problem in the field. You have your trusty laptop with your development system and an emulator. You figure out that there was a problem with the system specifications and a symmetric FIR filter in the software won ’ t do the job; it needs reduced passband ripple, or maybe more stopband attenuation. You then realize you don ’ t have any filter design software on the laptop, and the customer is getting angry. The answer is easy: You can take the existing filter and sharpen it. Simply stated, filter sharpening is a technique for creating a new filter from an old one [1] – [3] . While the technique is almost 30 years old, it is not generally known by DSP engineers nor is it mentioned in most DSP textbooks.
An application of neural networks to adaptive playout delay in VoIP
The statistical nature of data traffic and the dynamic routing techniques employed in IP networks results in a varying network delay (jitter) experienced by the individual IP packets which form a VoIP flow. As a result voice packets generated at successive and periodic intervals at a source will typically be buffered at the receiver prior to playback in order to smooth out the jitter. However, the additional delay introduced by the playout buffer degrades the quality of service. Thus, the ability to forecast the jitter is an integral part of selecting an appropriate buffer size. This paper compares several neural network based models for adaptive playout buffer selection and in particular a novel combined wavelet transform/neural network approach is proposed. The effectiveness of these algorithms is evaluated using recorded VoIP traces by comparing the buffering delay and the packet loss ratios for each technique. In addition, an output speech signal is reconstructed based on the packet loss information for each algorithm and the perceptual quality of the speech is then estimated using the PESQ MOS algorithm. Simulation results indicate that proposed Haar-Wavelets-Packet MLP and Statistical-Model MLP adaptive scheduling schemes offer superior performance.
HIERARCHICAL MOTION ESTIMATION FOR EMBEDDED OBJECT TRACKING
This paper presents an algorithm developed to provide automatic motion detection and object tracking embedded within intelligent CCTV systems. The algorithm development focuses on techniques which provide an efficient embedded systems implementation with the ability to target both FPGA and DSP devices. During algorithm development constraints on hardware implementation have been fully considered resulting in an algorithm which, when targeted at current FPGA devices, will take full advantage of the DSP resource commonly provided in such devices. The hierarchical structure of the proposed algorithm provides the system with a multi-level motion estimation process allowing low resolution estimation for motion detection and further higher resolution stages for motion estimation. An initial MATLAB prototype has demonstrated this algorithm capable of object motion estimation while compensating for camera motion, allowing a moving object to be tracked by a moving camera.
An FPGA Implementation of Hierarchical Motion Estimation for Embedded Oject Tracking
This paper presents the hardware implementation of an algorithm developed to provide automatic motion detection and object tracking functionality embedded within intelligent CCTV systems. The implementation is targeted at an Altera Stratix FPGA making full use of the dedicated DSP resource. The Altera Nios embedded processor provides a platform for the tracking control loop and generic Pan Tilt Zoom camera interface. This paper details the explicit functional stages of the algorithm that lend themselves to an optimised pipelined hardware implementation. This implementation provides maximum data throughput, providing real-time operation of the described algorithm, and enables a moving camera to track a moving object in real time.
Hidden Markov Model based recognition of musical pattern in South Indian Classical Music
Automatic recognition of musical patterns plays a crucial part in Musicological and Ethno musicological research and can become an indispensable tool for the search and comparison of music extracts within a large multimedia database. This paper finds an efficient method for recognizing isolated musical patterns in a monophonic environment, using Hidden Markov Model. Each pattern, to be recognized, is converted into a sequence of frequency jumps by means of a fundamental frequency tracking algorithm, followed by a quantizer. The resulting sequence of frequency jumps is presented to the input of the recognizer which use Hidden Markov Model. The main characteristic of Hidden Markov Model is that it utilizes the stochastic information from the musical frame to recognize the pattern. The methodology is tested in the context of South Indian Classical Music, which exhibits certain characteristics that make the classification task harder, when compared with Western musical tradition. Recognition of 100% has been obtained for the six typical music pattern used in practise. South Indian classical instrument, flute is used for the whole experiment.
Design and implementation of odd-order wave digital lattice lowpass filters, from specifications to Motorol DSP56307EVM module
This thesis is dedicated to applying and developing explicit formulas for the design and implementation of odd-order lattice Lowpass wave digital filters (WDFs) on a Digital Signal Processor (DSP), such as a Motorola DSP56307EVM (Evaluation Module). The direct design method of Gazsi for filter types such as Butterworfh, Chebyshev, inverse Chebyshev, and Cauer (Elliptic) provides a straightforward method for calculating the coefficients without an extensive knowledge of digital signal processing. A program package to design and implement odd-order WDFs, including detailed procedures and examples, is presented in this thesis and includes not only the calculations of the coefficients, but also the simulation on a MATLAB platform and an implementation on a Motorola DSP56307EVM board. It is very quick, effective and convenient to obtain the coefficients when the user enters a few parameters according to the general specifications; to verify the characteristics of the designed filter; to simulate the filter on the MATLAB platform; to implement the filter on the DSP board; and to compare the results between the simulation and the implementation.
Image Analysis Using a Dual-Tree M-Band Wavelet Transform
We propose a 2D generalization to the M-band case of the dual-tree decomposition structure (initially proposed by N. Kingsbury and further investigated by I. Selesnick) based on a Hilbert pair of wavelets. We particularly address (i) the construction of the dual basis and (ii) the resulting directional analysis. We also revisit the necessary pre-processing stage in the M-band case. While several reconstructions are possible because of the redundancy of the representation, we propose a new optimal signal reconstruction technique, which minimizes potential estimation errors. The effectiveness of the proposed M- band decomposition is demonstrated via denoising comparisons on several image types (natural, texture, seismics), with various M-band wavelets and thresholding strategies. Signicant improvements in terms of both overall noise reduction and direction preservation are observed.
Efficient Digital Fiilters
What would you do in the following situation? Let ’ s say you are diagnosing a DSP system problem in the field. You have your trusty laptop with your development system and an emulator. You figure out that there was a problem with the system specifications and a symmetric FIR filter in the software won ’ t do the job; it needs reduced passband ripple, or maybe more stopband attenuation. You then realize you don ’ t have any filter design software on the laptop, and the customer is getting angry. The answer is easy: You can take the existing filter and sharpen it. Simply stated, filter sharpening is a technique for creating a new filter from an old one [1] – [3] . While the technique is almost 30 years old, it is not generally known by DSP engineers nor is it mentioned in most DSP textbooks.
An application of neural networks to adaptive playout delay in VoIP
The statistical nature of data traffic and the dynamic routing techniques employed in IP networks results in a varying network delay (jitter) experienced by the individual IP packets which form a VoIP flow. As a result voice packets generated at successive and periodic intervals at a source will typically be buffered at the receiver prior to playback in order to smooth out the jitter. However, the additional delay introduced by the playout buffer degrades the quality of service. Thus, the ability to forecast the jitter is an integral part of selecting an appropriate buffer size. This paper compares several neural network based models for adaptive playout buffer selection and in particular a novel combined wavelet transform/neural network approach is proposed. The effectiveness of these algorithms is evaluated using recorded VoIP traces by comparing the buffering delay and the packet loss ratios for each technique. In addition, an output speech signal is reconstructed based on the packet loss information for each algorithm and the perceptual quality of the speech is then estimated using the PESQ MOS algorithm. Simulation results indicate that proposed Haar-Wavelets-Packet MLP and Statistical-Model MLP adaptive scheduling schemes offer superior performance.
An FPGA Implementation of Hierarchical Motion Estimation for Embedded Oject Tracking
This paper presents the hardware implementation of an algorithm developed to provide automatic motion detection and object tracking functionality embedded within intelligent CCTV systems. The implementation is targeted at an Altera Stratix FPGA making full use of the dedicated DSP resource. The Altera Nios embedded processor provides a platform for the tracking control loop and generic Pan Tilt Zoom camera interface. This paper details the explicit functional stages of the algorithm that lend themselves to an optimised pipelined hardware implementation. This implementation provides maximum data throughput, providing real-time operation of the described algorithm, and enables a moving camera to track a moving object in real time.
Code Acquisition using Smart Antennas with Adaptive Filtering Scheme for DS-CDMA Systems
Pseudo-noise (PN) code synchronizer is an essential element of direct-sequence code division multiple access (DS-CDMA) system because data transmission is possible only after the receiver accurately synchronizes the locally generated PN code with the incoming PN code. The code synchronization is processed in two steps, acquisition and tracking, to estimate the delay offset between the two codes. Recently, the adaptive LMS filtering scheme has been proposed for performing both code acquisition and tracking with the identical structure, where the LMS algorithm is used to adjust the FIR filter taps to search for the value of delay-offset adaptively. A decision device is employed in the adaptive LMS filtering scheme as a decision variable to indicate code synchronization, hence it plays an important role for the performance of mean acquisition time (MAT). In this thesis, only code acquisition is considered. In this thesis, a new decision device, referred to as the weight vector square norm (WVSN) test method, is devised associated with the adaptive LMS filtering scheme for code acquisition in DS-CDMA system. The system probabilities of the proposed scheme are derived for evaluating MAT. Numerical analyses and simulation results verify that the performance of the proposed scheme, in terms of detection probability and MAT, is superior to the conventional scheme with mean-squared error (MSE) test method, especially when the signal-to-interference-plus-noise ratio (SINR) is relatively low. Furthermore, an efficient and joint-adaptation code acquisition scheme, i.e., a smart antenna coupled with the proposed adaptive LMS filtering scheme with the WVSN test method, is devised for applying to a base station, where all antenna elements are employed during PN code acquisition. This new scheme is a process of PN code acquisition and the weight coefficients of smart antenna jointly and adaptively. Numerical analyses and simulation results demonstrate that the performance of the proposed scheme with five antenna elements, in terms of the output SINR, the detection probability and the MAT, can be improved by around 7 dB, compared to the one with single antenna case.
A DSP Implementation of OFDM Acoustic Modem
The success of multicarrier modulation in the form of OFDM in radio channels illuminates a path one could take towards high-rate underwater acoustic communications, and recently there are intensive investigations on underwater OFDM. In this paper, we implement the acoustic OFDM transmitter and receiver design of [4, 5] on a TMS320C6713 DSP board. We analyze the workload and identify the most time-consuming operations. Based on the workload analysis, we tune the algorithms and optimize the code to substantially reduce the synchronization time to 0.2 seconds and the processing time of one OFDM block to 1.7 seconds on a DSP processor at 225 MHz. This experimentation provides guidelines on our future work to reduce the per-block processing time to be less than the block duration of 0.23 seconds for real time operations.
A New Contender in the Digital Differentiator Race
This blog proposes a novel differentiator worth your consideration. Although simple, the differentiator provides a fairly wide 'frequency range of linear operation' and can be implemented, if need be, without performing numerical multiplications.
FUZZY LOGIC BASED CONVOLUTIONAL DECODER FOR USE IN MOBILE TELEPHONE SYSTEMS
Efficient convolutional coding and decoding algorithms are most crucial to successful operation of wireless communication systems in order to achieve high quality of service by reducing the overall bit error rate performance. A widely applied and well evaluated scheme for error correction purposes is well known as Viterbi algorithm [7]. Although the Viterbi algorithm has very good error correcting characteristics, computational effort required remains high. In this paper a novel approach is discussed introducing a convolutional decoder design based on fuzzy logic. A simplified version of this fuzzy based decoder is examined with respect to bit error rate (BER) performance. It can be shown that the fuzzy based convolutional decoder here proposed considerably reduces computational effort with only minor BER performance degradation when compared to the classical Viterbi approach.
Digital Signal Processing Maths
Modern digital signal processing makes use of a variety of mathematical techniques. These techniques are used to design and understand efficient filters for data processing and control.
HIERARCHICAL MOTION ESTIMATION FOR EMBEDDED OBJECT TRACKING
This paper presents an algorithm developed to provide automatic motion detection and object tracking embedded within intelligent CCTV systems. The algorithm development focuses on techniques which provide an efficient embedded systems implementation with the ability to target both FPGA and DSP devices. During algorithm development constraints on hardware implementation have been fully considered resulting in an algorithm which, when targeted at current FPGA devices, will take full advantage of the DSP resource commonly provided in such devices. The hierarchical structure of the proposed algorithm provides the system with a multi-level motion estimation process allowing low resolution estimation for motion detection and further higher resolution stages for motion estimation. An initial MATLAB prototype has demonstrated this algorithm capable of object motion estimation while compensating for camera motion, allowing a moving object to be tracked by a moving camera.






