DSPRelated.com

The Discrete Fourier Transform of Symmetric Sequences

Neil Robertson

Symmetric sequences arise often in digital signal processing. Examples include symmetric pulses, window functions, and the coefficients of most finite-impulse response (FIR) filters, not to mention the cosine function. Examining symmetric sequences can give us some insights into the Discrete Fourier Transform (DFT). An even-symmetric sequence is centered at n = 0 and xeven(n) = xeven(-n). The DFT of xeven(n) is real. Most often, signals we encounter start at n = 0, so they are not strictly speaking even-symmetric. We’ll look at the relationship between the DFT’s of such sequences and those of true even-symmetric sequences.


How the Cooley-Tukey FFT Algorithm Works | Part 3 - The Inner Butterfly

Mark Newman

At the heart of the Cooley-Tukey FFT algorithm lies a butterfly, a simple yet powerful image that captures the recursive nature of how the FFT works. In this article we discover the butterfly’s role in transforming complex signals into their frequency components with efficiency and elegance. Starting with the 2-point DFT, we reveal how the FFT reuses repeated calculations to save time and resources. Using a divide-and-conquer approach, the algorithm breaks signals into smaller groups, processes them through interleaving butterfly diagrams, and reassembles the results step by step.


How the Cooley-Tukey FFT Algorithm Works | Part 2 - Divide & Conquer

Mark Newman

The Fast Fourier Transform revolutionized the Discrete Fourier Transform by making it much more efficient. In part 1, we saw that if you run the DFT on a power-of-2 number of samples, the calculations of different groups of samples repeat themselves at different frequencies. By leveraging the repeating patterns of sine and cosine values, the algorithm enables us to calculate the full DFT more efficiently. However, the calculations of certain groups of samples repeat more often than others. In this article, we’re going to explore how the divide-and-conquer method prepares the ground for the next stage of the algorithm by grouping the samples into specially ordered pairs.


How the Cooley-Tukey FFT Algorithm Works | Part 1 - Repeating Calculations

Mark Newman

The Fourier Transform is a powerful tool, used in many technologies, from audio processing to wireless communication. However, calculating the FT can be computationally expensive. The Cooley-Tukey Fast Fourier Transform (FFT) algorithm provides a significant speedup. It exploits the repetitive nature of calculations within the Discrete Fourier Transform (DFT), the mathematical foundation of the FT. By recognizing patterns in the DFT calculations and reusing intermediate results, the FFT vastly reduces the number of operations required. In this series of articles, we will look at how the Cooley-Tukey FFT algorithm works.


Learn to Use the Discrete Fourier Transform

Neil Robertson

Discrete-time sequences arise in many ways: a sequence could be a signal captured by an analog-to-digital converter; a series of measurements; a signal generated by a digital modulator; or simply the coefficients of a digital filter. We may wish to know the frequency spectrum of any of these sequences. The most-used tool to accomplish this is the Discrete Fourier Transform (DFT), which computes the discrete frequency spectrum of a discrete-time sequence. The DFT is easily calculated using software, but applying it successfully can be challenging. This article provides Matlab examples of some techniques you can use to obtain useful DFT’s.


Model a Sigma-Delta DAC Plus RC Filter

Neil Robertson

Sigma-delta digital-to-analog converters (SD DAC’s) are often used for discrete-time signals with sample rate much higher than their bandwidth. For the simplest case, the DAC output is a single bit, so the only interface hardware required is a standard digital output buffer. Because of the high sample rate relative to signal bandwidth, a very simple DAC reconstruction filter suffices, often just a one-pole RC lowpass. In this article, I present a simple Matlab function that models the combination of a basic SD DAC and one-pole RC filter. This model allows easy evaluation of the overall performance for a given input signal and choice of sample rate, R, and C.


DAC Zero-Order Hold Models

Neil Robertson

This article provides two simple time-domain models of a DAC’s zero-order hold. These models will allow us to find time and frequency domain approximations of DAC outputs, and simulate analog filtering of those outputs. Developing the models is also a good way to learn about the DAC ZOH function.


Decimators Using Cascaded Multiplierless Half-band Filters

Neil Robertson

In my last post, I provided coefficients for several multiplierless half-band FIR filters. In the comment section, Rick Lyons mentioned that such filters would be useful in a multi-stage decimator. For such an application, any subsequent multipliers save on resources, since they operate at a fraction of the maximum sample frequency. We’ll examine the frequency response and aliasing of a multiplierless decimate-by-8 cascade in this article, and we’ll also discuss an interpolator cascade using the same half-band filters.


Pentagon Construction Using Complex Numbers

Cedron Dawg

A method for constructing a pentagon using a straight edge and a ruler is deduced from the complex values of the Fifth Roots of Unity. Analytic values for the points are also derived.


Multiplierless Half-band Filters and Hilbert Transformers

Neil Robertson

This article provides coefficients of multiplierless Finite Impulse Response 7-tap, 11-tap, and 15-tap half-band filters and Hilbert Transformers. Since Hilbert transformer coefficients are simply related to half-band coefficients, multiplierless Hilbert transformers are easily derived from multiplierless half-bands.