## Goertzel Algorithm for a Non-integer Frequency Index

If you've read about the Goertzel algorithm, you know it's typically presented as an efficient way to compute an individual kth bin result of an N-point discrete Fourier transform (DFT). The integer-valued frequency index k is in the range of zero to N-1 and the standard block diagram for the Goertzel algorithm is shown in Figure 1. For example, if you want to efficiently compute just the 17th DFT bin result (output sample X17) of a 64-point DFT you set integer frequency index k = 17 and N =...

## Is It True That j is Equal to the Square Root of -1 ?

A few days ago, on the YouTube.com web site, I watched an interesting video concerning complex numbers and the j operator. The video's author claimed that the statement "j is equal to the square root of negative one" is incorrect. What he said was:

He justified his claim by going through the following exercise, starting with:

Based on the algebraic identity:

the author rewrites Eq. (1) as:

If we assume

Eq. (3) can be rewritten...

## A Table of Digital Frequency Notation

August 5, 2013

When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)

The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...

## A Quadrature Signals Tutorial: Complex, But Not Complicated

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...

## Beat Notes: An Interesting Observation

Some weeks ago a friend of mine, a long time radio engineer as well as a piano player, called and asked me,

"When I travel in a DC-9 aircraft, and I sit back near the engines, I hear this fairly loud unpleasant whump whump whump whump sound. The frequency of that sound is, maybe, two cycles per second. I think that sound is a beat frequency because the DC-9's engines are turning at a slightly different number of revolutions per second. My question is, what sort of mechanism in the airplane...

## Using the DFT as a Filter: Correcting a Misconception

I have read, in some of the literature of DSP, that when the discrete Fourier transform (DFT) is used as a filter the process of performing a DFT causes an input signal's spectrum to be frequency translated down to zero Hz (DC). I can understand why someone might say that, but I challenge that statement as being incorrect. Here are my thoughts.

Using the DFT as a Filter It may seem strange to think of the DFT as being used as a filter but there are a number of applications where this is...

## The Little Fruit Market

There used to be a fruit market located at 391 San Antonio Road in Mountain View, California. In the 1990's I worked part time in Mountain View and drove past this market's building, shown in Figure 1, many times, unaware of its history. What happened at that fruit market has changed the lives of almost everyone on our planet. Here's the story.

William Shockley In 1948 the brilliant physicist William Shockley, along with John Bardeen and Walter Brattain, co-invented the transistor at Bell...

## Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved

This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.

Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...

## Setting the 3-dB Cutoff Frequency of an Exponential Averager

This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.

Figure 1 shows...

## Understanding the 'Phasing Method' of Single Sideband Demodulation

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

• synchronous detection,
• phasing method,
• Weaver method, and
• filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...

## Computing Translated Frequencies in Digitizing and Downsampling Analog Bandpass Signals

October 31, 20131 comment

In digital signal processing (DSP) we're all familiar with the processes of bandpass sampling an analog bandpass signal and downsampling a digital bandpass signal. The overall spectral behavior of those operations are well-documented. However, mathematical expressions for computing the translated frequency of individual spectral components, after bandpass sampling or downsampling, are not available in the standard DSP textbooks. The following three sections explain how to compute the...

## Reduced-Delay IIR Filters

This blog gives the results of a preliminary investigation of reduced-delay (reduced group delay) IIR filters based on my understanding of the concepts presented in a recent interesting blog by Steve Maslen [1].

Development of a Reduced-Delay 2nd-Order IIR Filter

Maslen's development of a reduced-delay 2nd-order IIR filter begins with a traditional prototype filter, HTrad, shown in Figure 1(a). The first modification to the prototype filter is to extract the b0 feedforward coefficient...

## Orfanidis Textbooks are Available Online

July 12, 2011

I have just learned that Sophocles J. Orfanidis, the well-known professor with the ECE Department of Rutgers University, has made two of his signal processing textbooks available for downloading on the Internet. The first textbook is: "Introduction to Signal Processing" available at: http://eceweb1.rutgers.edu/~orfanidi/intro2sp/

Happily, also available at the above web site are:

• Errata for the textbook.
• Homework Solutions Manual
• Errata for Solutions...

## Computing an FFT of Complex-Valued Data Using a Real-Only FFT Algorithm

Someone recently asked me if I knew of a way to compute a fast Fourier transform (FFT) of complex-valued input samples using an FFT algorithm that accepts only real-valued input data. Knowing of no way to do this, I rifled through my library of hardcopy FFT articles looking for help. I found nothing useful that could be applied to this problem.

After some thinking, I believe I have a solution to this problem. Here is my idea:

Let's say our original input data is the complex-valued sequence...

## A Remarkable Bit of DFT Trivia

I recently noticed a rather peculiar example of discrete Fourier transform (DFT) trivia; an unexpected coincidence regarding the scalloping loss of the DFT. Here's the story.

DFT SCALLOPING LOSS As you know, if we perform an N-point DFT on N real-valued time-domain samples of a discrete sine wave, whose frequency is an integer multiple of fs/N (fs is the sample rate in Hz), the peak magnitude of the sine wave's positive-frequency spectral component will be

where A is the peak amplitude...

## Above-Average Smoothing of Impulsive Noise

In this blog I show a neat noise reduction scheme that has the high-frequency noise reduction behavior of a traditional moving average process but with much better impulsive-noise suppression.

In practice we may be required to make precise measurements in the presence of highly-impulsive noise. Without some sort of analog signal conditioning, or digital signal processing, it can be difficult to obtain stable and repeatable, measurements. This impulsive-noise smoothing trick,...

## Implementing Impractical Digital Filters

This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.

Implementing an Impractical Filter: Example 1

Reference [1] presented the digital IIR bandpass filter...

## "Neat" Rectangular to Polar Conversion Algorithm

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:

## Errata for the book: 'Understanding Digital Signal Processing'

Errata 3rd Ed. International Version.pdfErrata 3rd Ed. International Version.pdf

This blog post provides, in one place, the errata for each of the many different Editions/Printings of my book Understanding Digital Signal Processing.

If you would like the errata for your copy of the book, merely scroll down and click on the appropriate red line below. For the American versions of the various Editions of the book you'll need to know the "Printing Number" of your copy of the...