## Understanding the 'Phasing Method' of Single Sideband Demodulation

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...

## How Discrete Signal Interpolation Improves D/A Conversion

This blog post is also available in pdf format. Download here.Earlier this year, for the Linear Audio magazine, published in the Netherlands whose subscribers are technically-skilled hi-fi audio enthusiasts, I wrote an article on the fundamentals of interpolation as it's used to improve the performance of analog-to-digital conversion. Perhaps that article will be of some value to the subscribers of dsprelated.com. Here's what I wrote:

We encounter the process of digital-to-analog...

## How Not to Reduce DFT Leakage

This blog describes a technique to reduce the effects of spectral leakage when using the discrete Fourier transform (DFT).

In late April 2012 there was a thread on the comp.dsp newsgroup discussing ways to reduce the spectral leakage problem encountered when using the DFT. One post in that thread caught my eye [1]. That post referred to a website presenting a paper describing a DFT leakage method that I'd never heard of before [2]. (Of course, not that I've heard...

## The History of CIC Filters: The Untold Story

If you have ever studied or designed a cascaded integrator-comb (CIC) lowpass filter then surely you've read Eugene Hogenauer's seminal 1981 IEEE paper where he first introduced the CIC filter to the signal processing world [1]. As it turns out, Hogenauer's famous paper was not the first formal document describing and proposing CIC filters. Here's the story.

In the Fall of 1979 Eugene Hogenauer was finalizing his development of the CIC filter, the filter now used in so many multirate signal...

## Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

There are two code snippets associated with this blog post:

and

Testing the Flat-Top Windowing Function

This blog discusses an accurate method of estimating time-domain sinewave peak amplitudes based on fast Fourier transform (FFT) data. Such an operation sounds simple, but the scalloping loss characteristic of FFTs complicates the process. We eliminate that complication by...

## Generating Complex Baseband and Analytic Bandpass Signals

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of reference table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or...

## Orfanidis Textbooks are Available Online

I have just learned that Sophocles J. Orfanidis, the well-known professor with the ECE Department of Rutgers University, has made two of his signal processing textbooks available for downloading on the Internet. The first textbook is: "Introduction to Signal Processing" available at: http://eceweb1.rutgers.edu/~orfanidi/intro2sp/

Happily, also available at the above web site are:

- Errata for the textbook.
- Homework Solutions Manual
- Errata for Solutions...

## Do Multirate Systems Have Transfer Functions?

The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].

Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...

## Multiplying Two Binary Numbers

I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.

Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...

## "Neat" Rectangular to Polar Conversion Algorithm

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:

## Multiplierless Exponential Averaging

This blog discusses an interesting approach to exponential averaging. To begin my story, a traditional exponential averager (also called a "leaky integrator"), shown in Figure 1(a), is commonly used to reduce noise fluctuations that contaminate relatively constant-amplitude signal measurements.

Figure 1 Exponential averaging: (a) standard network; (b) single-multiply network.That exponential averager's difference equation is

y(n) = αx(n) + (1 –...## Using the DFT as a Filter: Correcting a Misconception

I have read, in some of the literature of DSP, that when the discrete Fourier transform (DFT) is used as a filter the process of performing a DFT causes an input signal's spectrum to be frequency translated down to zero Hz (DC). I can understand why someone might say that, but I challenge that statement as being incorrect. Here are my thoughts.

Using the DFT as a Filter It may seem strange to think of the DFT as being used as a filter but there are a number of applications where this is...

## Using Mason's Rule to Analyze DSP Networks

There have been times when I wanted to determine the z-domain transfer function of some discrete network, but my algebra skills failed me. Some time ago I learned Mason's Rule, which helped me solve my problems. If you're willing to learn the steps in using Mason's Rule, it has the power of George Foreman's right hand in solving network analysis problems.

This blog discusses a valuable analysis method (well known to our analog control system engineering brethren) to obtain the z-domain...

## A Table of Digital Frequency Notation

When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)

The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...

## Do Multirate Systems Have Transfer Functions?

The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].

Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...

## Improved Narrowband Lowpass IIR Filters

Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.

Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...

## Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling

Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.

The tool shows four important characteristics of periodic sampling:

Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...## Implementing Simultaneous Digital Differentiation, Hilbert Transformation, and Half-Band Filtering

Recently I've been thinking about digital differentiator and Hilbert transformer implementations and I've developed a processing scheme that may be of interest to the readers here on dsprelated.com.

This blog presents a novel method for simultaneously implementing a digital differentiator (DD), a Hilbert transformer (HT), and a half-band lowpass filter (HBF) using a single tapped-delay line and a single set of coefficients. The method is based on the similarities of the three N =...

## Computing Translated Frequencies in Digitizing and Downsampling Analog Bandpass Signals

In digital signal processing (DSP) we're all familiar with the processes of bandpass sampling an analog bandpass signal and downsampling a digital bandpass signal. The overall spectral behavior of those operations are well-documented. However, mathematical expressions for computing the translated frequency of individual spectral components, after bandpass sampling or downsampling, are not available in the standard DSP textbooks. The following three sections explain how to compute the...

## Is It True That *j* is Equal to the Square Root of -1 ?

A few days ago, on the YouTube.com web site, I watched an interesting video concerning complex numbers and the j operator. The video's author claimed that the statement "j is equal to the square root of negative one" is incorrect. What he said was:

He justified his claim by going through the following exercise, starting with:

Based on the algebraic identity:

the author rewrites Eq. (1) as:

If we assume

Eq. (3) can be rewritten...

## A Remarkable Bit of DFT Trivia

I recently noticed a rather peculiar example of discrete Fourier transform (DFT) trivia; an unexpected coincidence regarding the scalloping loss of the DFT. Here's the story.

DFT SCALLOPING LOSS As you know, if we perform an N-point DFT on N real-valued time-domain samples of a discrete sine wave, whose frequency is an integer multiple of fs/N (fs is the sample rate in Hz), the peak magnitude of the sine wave's positive-frequency spectral component will be

where A is the peak amplitude...

## Why Time-Domain Zero Stuffing Produces Multiple Frequency-Domain Spectral Images

This blog explains why, in the process of time-domain interpolation (sample rate increase), zero stuffing a time sequence with zero-valued samples produces an increased-length time sequence whose spectrum contains replications of the original time sequence's spectrum.

Background

The traditional way to interpolate (sample rate increase) an x(n) time domain sequence is shown in Figure 1.

Figure 1

The '↑ L' operation in Figure 1 means to...

## Specifying the Maximum Amplifier Noise When Driving an ADC

I recently learned an interesting rule of thumb regarding the use of an amplifier to drive the input of an analog to digital converter (ADC). The rule of thumb describes how to specify the maximum allowable noise power of the amplifier [1].

The Problem Here's the situation for an ADC whose maximum analog input voltage range is –VRef to +VRef. If we drive an ADC's analog input with an sine wave whose peak amplitude is VP = VRef, the ADC's output signal to noise ratio is maximized. We'll...

## Implementing Impractical Digital Filters

This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.

Implementing an Impractical Filter: Example 1

Reference [1] presented the digital IIR bandpass filter...

## "Neat" Rectangular to Polar Conversion Algorithm

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:

## Do Multirate Systems Have Transfer Functions?

The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].

Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...

## Computing Translated Frequencies in Digitizing and Downsampling Analog Bandpass Signals

In digital signal processing (DSP) we're all familiar with the processes of bandpass sampling an analog bandpass signal and downsampling a digital bandpass signal. The overall spectral behavior of those operations are well-documented. However, mathematical expressions for computing the translated frequency of individual spectral components, after bandpass sampling or downsampling, are not available in the standard DSP textbooks. The following three sections explain how to compute the...

## An Astounding Digital Filter Design Application

I've recently encountered a digital filter design application that astonished me with its design flexibility, capability, and ease of use. The software is called the "ASN Filter Designer." After experimenting with a demo version of this filter design software I was so impressed that I simply had publicize it to the subscribers here on dsprelated.com.

What I Liked About the ASN Filter DesignerWith typical filter design software packages the user enters numerical values for the...

## A Useful Source of Signal Processing Information

I just discovered a useful web-based source of signal processing information that was new to me. I thought I'd share what I learned with the subscribers here on DSPRelated.com.

The Home page of the web site that I found doesn't look at all like it would be useful to us DSP fanatics. But if you enter some signal processing topic of interest, say, "FM demodulation" (without the quotation marks) into the 'Search' box at the top of the web page

and click the red 'SEARCH...

## Multiplierless Exponential Averaging

This blog discusses an interesting approach to exponential averaging. To begin my story, a traditional exponential averager (also called a "leaky integrator"), shown in Figure 1(a), is commonly used to reduce noise fluctuations that contaminate relatively constant-amplitude signal measurements.

Figure 1 Exponential averaging: (a) standard network; (b) single-multiply network.That exponential averager's difference equation is

y(n) = αx(n) + (1 –...