A Complex Variable Detective Story – A Disconnect Between Theory and Implementation
Recently I was in the middle of a pencil-and-paper analysis of a digital 5-tap FIR filter having complex-valued coefficients and I encountered a surprising and thought-provoking problem. So that you can avoid the algebra difficulty I encountered, please read on.
A Surprising Algebra Puzzle
I wanted to derive the H(ω) equation for the frequency response of my FIR digital filter whose complex coefficients were h0, h1, h2, h3, and h4. I could then test the validity of my H(ω)...
The Number 9, Not So Magic After All
This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.
For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...
Sum of Two Equal-Frequency Sinusoids
Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:
Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...
The DFT Magnitude of a Real-valued Cosine Sequence
This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.
To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...
Specifying the Maximum Amplifier Noise When Driving an ADC
I recently learned an interesting rule of thumb regarding the use of an amplifier to drive the input of an analog to digital converter (ADC). The rule of thumb describes how to specify the maximum allowable noise power of the amplifier [1].
The Problem Here's the situation for an ADC whose maximum analog input voltage range is –VRef to +VRef. If we drive an ADC's analog input with an sine wave whose peak amplitude is VP = VRef, the ADC's output signal to noise ratio is maximized. We'll...
A Remarkable Bit of DFT Trivia
I recently noticed a rather peculiar example of discrete Fourier transform (DFT) trivia; an unexpected coincidence regarding the scalloping loss of the DFT. Here's the story.
DFT SCALLOPING LOSS As you know, if we perform an N-point DFT on N real-valued time-domain samples of a discrete sine wave, whose frequency is an integer multiple of fs/N (fs is the sample rate in Hz), the peak magnitude of the sine wave's positive-frequency spectral component will be
where A is the peak amplitude...
Computing Translated Frequencies in Digitizing and Downsampling Analog Bandpass Signals
In digital signal processing (DSP) we're all familiar with the processes of bandpass sampling an analog bandpass signal and downsampling a digital bandpass signal. The overall spectral behavior of those operations are well-documented. However, mathematical expressions for computing the translated frequency of individual spectral components, after bandpass sampling or downsampling, are not available in the standard DSP textbooks. The following three sections explain how to compute the...
Goertzel Algorithm for a Non-integer Frequency Index
If you've read about the Goertzel algorithm, you know it's typically presented as an efficient way to compute an individual kth bin result of an N-point discrete Fourier transform (DFT). The integer-valued frequency index k is in the range of zero to N-1 and the standard block diagram for the Goertzel algorithm is shown in Figure 1. For example, if you want to efficiently compute just the 17th DFT bin result (output sample X17) of a 64-point DFT you set integer frequency index k = 17 and N =...
Is It True That j is Equal to the Square Root of -1 ?
A few days ago, on the YouTube.com web site, I watched an interesting video concerning complex numbers and the j operator. The video's author claimed that the statement "j is equal to the square root of negative one" is incorrect. What he said was:
He justified his claim by going through the following exercise, starting with:
Based on the algebraic identity:
the author rewrites Eq. (1) as:
If we assume
Eq. (3) can be rewritten...
A Table of Digital Frequency Notation
When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)
The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...
Correcting an Important Goertzel Filter Misconception
Recently I was on the Signal Processing Stack Exchange web site (a question and answer site for DSP people) and I read a posted question regarding Goertzel filters [1]. One of the subscribers posted a reply to the question by pointing interested readers to a Wikipedia web page discussing Goertzel filters [2]. I noticed the Wiki web site stated that a Goertzel filter:
"...is marginally stable and vulnerable tonumerical error accumulation when computed usinglow-precision arithmetic and...An Astounding Digital Filter Design Application
I've recently encountered a digital filter design application that astonished me with its design flexibility, capability, and ease of use. The software is called the "ASN Filter Designer." After experimenting with a demo version of this filter design software I was so impressed that I simply had publicize it to the subscribers here on dsprelated.com.
What I Liked About the ASN Filter DesignerWith typical filter design software packages the user enters numerical values for the...
A Wide-Notch Comb Filter
This blog describes a linear-phase comb filter having wider stopband notches than a traditional comb filter.
Background
Let's first review the behavior of a traditional comb filter. Figure 1(a) shows a traditional comb filter comprising two cascaded recursive running sum (RRS) comb filters. Figure 1(b) shows the filter's co-located dual poles and dual zeros on the z-plane, while Figure 1(c) shows the filter's positive-frequency magnitude response when, for example, D = 9. The...Goertzel Algorithm for a Non-integer Frequency Index
If you've read about the Goertzel algorithm, you know it's typically presented as an efficient way to compute an individual kth bin result of an N-point discrete Fourier transform (DFT). The integer-valued frequency index k is in the range of zero to N-1 and the standard block diagram for the Goertzel algorithm is shown in Figure 1. For example, if you want to efficiently compute just the 17th DFT bin result (output sample X17) of a 64-point DFT you set integer frequency index k = 17 and N =...
Online DSP Classes: Why Such a High Dropout Rate?
Last year the IEEE Signal Processing Magazine published a lengthy article describing three university-sponsored online digital signal processing (DSP) courses [1]. The article detailed all the effort the professors expended in creating those courses and the courses' perceived values to students.
However, one fact that struck me as important, but not thoroughly addressed in the article, was the shocking dropout rate of those online courses. For two of the courses the article's...
Two Easy Ways To Test Multistage CIC Decimation Filters
This blog presents two very easy ways to test the performance of multistage cascaded integrator-comb (CIC) decimation filters [1]. Anyone implementing CIC filters should take note of the following proposed CIC filter test methods.
Introduction
Figure 1 presents a multistage decimate by D CIC filter where the number of stages is S = 3. The '↓D' operation represents downsampling by integer D (discard all but every Dth sample), and n is the time index.
If the Figure 3 filter's...
A Table of Digital Frequency Notation
When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)
The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...
Computing Chebyshev Window Sequences
Chebyshev windows (also called Dolph-Chebyshev, or Tchebyschev windows), have several useful properties. Those windows, unlike the fixed Hanning, Hamming, or Blackman window functions, have adjustable sidelobe levels. For a given user-defined sidelobe level and window sequence length, Chebyshev windows yield the most narrow mainlobe compared to any fixed window functions.
However, for some reason, detailed descriptions of how to compute Chebyshev window sequences are not readily available...
A New Contender in the Digital Differentiator Race
This blog proposes a novel differentiator worth your consideration. Although simple, the differentiator provides a fairly wide 'frequency range of linear operation' and can be implemented, if need be, without performing numerical multiplications.
BackgroundIn reference [1] I presented a computationally-efficient tapped-delay line digital differentiator whose $h_{ref}(k)$ impulse response is:
$$ h_{ref}(k) = {-1/16}, \ 0, \ 1, \ 0, \ {-1}, \ 0, \ 1/16 \tag{1} $$and...
Improved Narrowband Lowpass IIR Filters
Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.
Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...
How Not to Reduce DFT Leakage
This blog describes a technique to reduce the effects of spectral leakage when using the discrete Fourier transform (DFT).
In late April 2012 there was a thread on the comp.dsp newsgroup discussing ways to reduce the spectral leakage problem encountered when using the DFT. One post in that thread caught my eye [1]. That post referred to a website presenting a paper describing a DFT leakage method that I'd never heard of before [2]. (Of course, not that I've heard...
Is It True That j is Equal to the Square Root of -1 ?
A few days ago, on the YouTube.com web site, I watched an interesting video concerning complex numbers and the j operator. The video's author claimed that the statement "j is equal to the square root of negative one" is incorrect. What he said was:
He justified his claim by going through the following exercise, starting with:
Based on the algebraic identity:
the author rewrites Eq. (1) as:
If we assume
Eq. (3) can be rewritten...
Improved Narrowband Lowpass IIR Filters
Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.
Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...
The Little Fruit Market
There used to be a fruit market located at 391 San Antonio Road in Mountain View, California. In the 1990's I worked part time in Mountain View and drove past this market's building, shown in Figure 1, many times, unaware of its history. What happened at that fruit market has changed the lives of almost everyone on our planet. Here's the story.
William Shockley In 1948 the brilliant physicist William Shockley, along with John Bardeen and Walter Brattain, co-invented the transistor at Bell...
Computing Chebyshev Window Sequences
Chebyshev windows (also called Dolph-Chebyshev, or Tchebyschev windows), have several useful properties. Those windows, unlike the fixed Hanning, Hamming, or Blackman window functions, have adjustable sidelobe levels. For a given user-defined sidelobe level and window sequence length, Chebyshev windows yield the most narrow mainlobe compared to any fixed window functions.
However, for some reason, detailed descriptions of how to compute Chebyshev window sequences are not readily available...
A New Contender in the Digital Differentiator Race
This blog proposes a novel differentiator worth your consideration. Although simple, the differentiator provides a fairly wide 'frequency range of linear operation' and can be implemented, if need be, without performing numerical multiplications.
BackgroundIn reference [1] I presented a computationally-efficient tapped-delay line digital differentiator whose $h_{ref}(k)$ impulse response is:
$$ h_{ref}(k) = {-1/16}, \ 0, \ 1, \ 0, \ {-1}, \ 0, \ 1/16 \tag{1} $$and...
Do Multirate Systems Have Transfer Functions?
The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].
Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...
Multiplierless Exponential Averaging
This blog discusses an interesting approach to exponential averaging. To begin my story, a traditional exponential averager (also called a "leaky integrator"), shown in Figure 1(a), is commonly used to reduce noise fluctuations that contaminate relatively constant-amplitude signal measurements.
Figure 1 Exponential averaging: (a) standard network; (b) single-multiply network.That exponential averager's difference equation is
y(n) = αx(n) + (1 –...Two Easy Ways To Test Multistage CIC Decimation Filters
This blog presents two very easy ways to test the performance of multistage cascaded integrator-comb (CIC) decimation filters [1]. Anyone implementing CIC filters should take note of the following proposed CIC filter test methods.
Introduction
Figure 1 presents a multistage decimate by D CIC filter where the number of stages is S = 3. The '↓D' operation represents downsampling by integer D (discard all but every Dth sample), and n is the time index.
If the Figure 3 filter's...
Orfanidis Textbooks are Available Online
I have just learned that Sophocles J. Orfanidis, the well-known professor with the ECE Department of Rutgers University, has made two of his signal processing textbooks available for downloading on the Internet. The first textbook is: "Introduction to Signal Processing" available at: http://eceweb1.rutgers.edu/~orfanidi/intro2sp/
Happily, also available at the above web site are:
- Errata for the textbook.
- Homework Solutions Manual
- Errata for Solutions...