A New Contender in the Digital Differentiator Race
This blog proposes a novel differentiator worth your consideration. Although simple, the differentiator provides a fairly wide 'frequency range of linear operation' and can be implemented, if need be, without performing numerical multiplications.
BackgroundIn reference [1] I presented a computationally-efficient tapped-delay line digital differentiator whose $h_{ref}(k)$ impulse response is:
$$ h_{ref}(k) = {-1/16}, \ 0, \ 1, \ 0, \ {-1}, \ 0, \ 1/16 \tag{1} $$and...
The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase
This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:
What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?I'll declare two things to convince you to continue reading.
Declaration# 1: "That the coefficients must be symmetrical" is not a correct
Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm
If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.
Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:
$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...Correcting an Important Goertzel Filter Misconception
Recently I was on the Signal Processing Stack Exchange web site (a question and answer site for DSP people) and I read a posted question regarding Goertzel filters [1]. One of the subscribers posted a reply to the question by pointing interested readers to a Wikipedia web page discussing Goertzel filters [2]. I noticed the Wiki web site stated that a Goertzel filter:
"...is marginally stable and vulnerable tonumerical error accumulation when computed usinglow-precision arithmetic and...Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling
Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.
The tool shows four important characteristics of periodic sampling:
Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...Why Time-Domain Zero Stuffing Produces Multiple Frequency-Domain Spectral Images
This blog explains why, in the process of time-domain interpolation (sample rate increase), zero stuffing a time sequence with zero-valued samples produces an increased-length time sequence whose spectrum contains replications of the original time sequence's spectrum.
Background
The traditional way to interpolate (sample rate increase) an x(n) time domain sequence is shown in Figure 1.
Figure 1
The '↑ L' operation in Figure 1 means to...
Complex Down-Conversion Amplitude Loss
This blog illustrates the signal amplitude loss inherent in a traditional complex down-conversion system. (In the literature of signal processing, complex down-conversion is also called "quadrature demodulation.")
The general idea behind complex down-conversion is shown in Figure 1(a). And the traditional hardware block diagram of a complex down-converter is shown in Figure 1(b).
Let's assume the input to our down-conversion system is an analog radio frequency (RF) signal,...
A Complex Variable Detective Story – A Disconnect Between Theory and Implementation
Recently I was in the middle of a pencil-and-paper analysis of a digital 5-tap FIR filter having complex-valued coefficients and I encountered a surprising and thought-provoking problem. So that you can avoid the algebra difficulty I encountered, please read on.
A Surprising Algebra Puzzle
I wanted to derive the H(ω) equation for the frequency response of my FIR digital filter whose complex coefficients were h0, h1, h2, h3, and h4. I could then test the validity of my H(ω)...
The Number 9, Not So Magic After All
This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.
For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...
Sum of Two Equal-Frequency Sinusoids
Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:
Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...
Reducing IIR Filter Computational Workload
This blog describes a straightforward method to significantly reduce the number of necessary multiplies per input sample of traditional IIR lowpass and highpass digital filters.
Reducing IIR Filter Computations Using Dual-Path Allpass Filters
We can improve the computational speed of a lowpass or highpass IIR filter by converting that filter into a dual-path filter consisting of allpass filters as shown in Figure 1.
...A New Contender in the Quadrature Oscillator Race
This blog advocates a relatively new and interesting quadrature oscillator developed by A. David Levine in 2009 and independently by Martin Vicanek in 2015 [1]. That oscillator is shown in Figure 1.
The time domain equations describing the Figure 1 oscillator are
w(n) =...
A Simpler Goertzel Algorithm
In this blog I propose a Goertzel algorithm that is simpler than the version of the Goertzel algorithm that is traditionally presented DSP textbooks. Below I very briefly describe the DSP textbook version of the Goertzel algorithm followed by a description of my proposed simpler algorithm.
The Traditional DSP Textbook Goertzel Algorithm
The so-called Goertzel algorithm is used to efficiently compute a single mth-bin sample of an N-point discrete Fourier transform (DFT) [1-4]. The...
Setting the 3-dB Cutoff Frequency of an Exponential Averager
This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.
Figure 1 shows...
Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved
This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.
Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...
A New Contender in the Digital Differentiator Race
This blog proposes a novel differentiator worth your consideration. Although simple, the differentiator provides a fairly wide 'frequency range of linear operation' and can be implemented, if need be, without performing numerical multiplications.
BackgroundIn reference [1] I presented a computationally-efficient tapped-delay line digital differentiator whose $h_{ref}(k)$ impulse response is:
$$ h_{ref}(k) = {-1/16}, \ 0, \ 1, \ 0, \ {-1}, \ 0, \ 1/16 \tag{1} $$and...
Computing Chebyshev Window Sequences
Chebyshev windows (also called Dolph-Chebyshev, or Tchebyschev windows), have several useful properties. Those windows, unlike the fixed Hanning, Hamming, or Blackman window functions, have adjustable sidelobe levels. For a given user-defined sidelobe level and window sequence length, Chebyshev windows yield the most narrow mainlobe compared to any fixed window functions.
However, for some reason, detailed descriptions of how to compute Chebyshev window sequences are not readily available...
Looking For a Second Toolbox? This One's For Sale
In case you're looking for a second toolbox, this used toolbox is for sale.The blue-enameled steel toolbox measures 13 x 7 x 5 inches and, when opened, has a three-section tray attached to the lid. Showing signs of heavy use, the interior, tray, and exterior have collected a fair amount of dirt and grease and bear many scratches. The bottom of the box is worn from having been slid on rough surfaces.
The toolbox currently resides in Italy. But don't worry, it can be shipped to you....
Above-Average Smoothing of Impulsive Noise
In this blog I show a neat noise reduction scheme that has the high-frequency noise reduction behavior of a traditional moving average process but with much better impulsive-noise suppression.
In practice we may be required to make precise measurements in the presence of highly-impulsive noise. Without some sort of analog signal conditioning, or digital signal processing, it can be difficult to obtain stable and repeatable, measurements. This impulsive-noise smoothing trick,...
Beat Notes: An Interesting Observation
Some weeks ago a friend of mine, a long time radio engineer as well as a piano player, called and asked me,
"When I travel in a DC-9 aircraft, and I sit back near the engines, I hear this fairly loud unpleasant whump whump whump whump sound. The frequency of that sound is, maybe, two cycles per second. I think that sound is a beat frequency because the DC-9's engines are turning at a slightly different number of revolutions per second. My question is, what sort of mechanism in the airplane...
Do Multirate Systems Have Transfer Functions?
The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].
Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...
Online DSP Classes: Why Such a High Dropout Rate?
Last year the IEEE Signal Processing Magazine published a lengthy article describing three university-sponsored online digital signal processing (DSP) courses [1]. The article detailed all the effort the professors expended in creating those courses and the courses' perceived values to students.
However, one fact that struck me as important, but not thoroughly addressed in the article, was the shocking dropout rate of those online courses. For two of the courses the article's...
Reduced-Delay IIR Filters
This blog gives the results of a preliminary investigation of reduced-delay (reduced group delay) IIR filters based on my understanding of the concepts presented in a recent interesting blog by Steve Maslen [1].
Development of a Reduced-Delay 2nd-Order IIR Filter
Maslen's development of a reduced-delay 2nd-order IIR filter begins with a traditional prototype filter, HTrad, shown in Figure 1(a). The first modification to the prototype filter is to extract the b0 feedforward coefficient...
Improved Narrowband Lowpass IIR Filters
Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.
Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...
A New Contender in the Digital Differentiator Race
This blog proposes a novel differentiator worth your consideration. Although simple, the differentiator provides a fairly wide 'frequency range of linear operation' and can be implemented, if need be, without performing numerical multiplications.
BackgroundIn reference [1] I presented a computationally-efficient tapped-delay line digital differentiator whose $h_{ref}(k)$ impulse response is:
$$ h_{ref}(k) = {-1/16}, \ 0, \ 1, \ 0, \ {-1}, \ 0, \ 1/16 \tag{1} $$and...
A Fast Real-Time Trapezoidal Rule Integrator
This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.
Background
While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...
Multiplying Two Binary Numbers
I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.
Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...
Errata for the book: 'Understanding Digital Signal Processing'
Errata 3rd Ed. International Version.pdfErrata 3rd Ed. International Version.pdfThis blog post provides, in one place, the errata for each of the many different Editions/Printings of my book Understanding Digital Signal Processing.
If you would like the errata for your copy of the book, merely scroll down and click on the appropriate red line below. For the American versions of the various Editions of the book you'll need to know the "Printing Number" of your copy of the...
Specifying the Maximum Amplifier Noise When Driving an ADC
I recently learned an interesting rule of thumb regarding the use of an amplifier to drive the input of an analog to digital converter (ADC). The rule of thumb describes how to specify the maximum allowable noise power of the amplifier [1].
The Problem Here's the situation for an ADC whose maximum analog input voltage range is –VRef to +VRef. If we drive an ADC's analog input with an sine wave whose peak amplitude is VP = VRef, the ADC's output signal to noise ratio is maximized. We'll...
60-Hz Noise and Baseline Drift Reduction in ECG Signal Processing
Electrocardiogram (ECG) signals are obtained by monitoring the electrical activity of the human heart for medical diagnostic purposes [1]. This blog describes a very efficient digital filter used to reduce both 60 Hz AC power line noise and unwanted signal baseline drift that often contaminate ECG signals.
PDF_HERE
We'll first describe the ECG noise reduction filter and then examine the filter's performance in a real-world ECG signal filtering example.Proposed ECG Noise Reduction Digital...











