## A Fast Real-Time Trapezoidal Rule Integrator

This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.

Background

While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...

## A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters

This blog discusses the behavior, mathematics, and implementation of cascaded integrator-comb filters.

Cascaded integrator-comb (CIC) digital filters are computationally-efficient implementations of narrowband lowpass filters, and are often embedded in hardware implementations of decimation, interpolation, and delta-sigma converter filtering.

After describing a few applications of CIC filters, this blog introduces their structure and behavior, presents the frequency-domain...

## The DFT of Finite-Length Time-Reversed Sequences

Recently I've been reading papers on underwater acoustic communications systems and this caused me to investigate the frequency-domain effects of time-reversal of time-domain sequences. I created this blog because there is so little coverage of this topic in the literature of DSP.

This blog reviews the two types of time-reversal of finite-length sequences and summarizes their discrete Fourier transform (DFT) frequency-domain characteristics.The Two Types of Time-Reversal in DSP

...## Update To: A Wide-Notch Comb Filter

This blog presents alternatives to the wide-notch comb filter described in Reference [1]. That comb filter, which for notational reasons I now call a 2-RRS wide notch comb filter, is shown in Figure 1. I use the "2-RRS" moniker because the comb filter uses two recursive running sum (RRS) networks.

The z-domain transfer function of the 2-RRS wide-notch comb filter, H2-RRS(z), is:

References

[1] R. Lyons, "A Wide-Notch Comb Filter", dsprelated.com Blogs, Nov. 24, 2019, Available...

## A Wide-Notch Comb Filter

This blog describes a linear-phase comb filter having wider stopband notches than a traditional comb filter.

Background

Let's first review the behavior of a traditional comb filter. Figure 1(a) shows a traditional comb filter comprising two cascaded recursive running sum (RRS) comb filters. Figure 1(b) shows the filter's co-located dual poles and dual zeros on the z-plane, while Figure 1(c) shows the filter's positive-frequency magnitude response when, for example, D = 9. The...## The Risk In Using Frequency Domain Curves To Evaluate Digital Integrator Performance

This blog shows the danger in evaluating the performance of a digital integration network based solely on its frequency response curve. If you plan on implementing a digital integrator in your signal processing work I recommend you continue reading this blog.

Background

Typically when DSP practitioners want to predict the accuracy performance of a digital integrator they compare how closely that integrator's frequency response matches the frequency response of an ideal integrator [1,2]....

## Reduced-Delay IIR Filters

This blog gives the results of a preliminary investigation of reduced-delay (reduced group delay) IIR filters based on my understanding of the concepts presented in a recent interesting blog by Steve Maslen [1].

Development of a Reduced-Delay 2nd-Order IIR Filter

Maslen's development of a reduced-delay 2nd-order IIR filter begins with a traditional prototype filter, HTrad, shown in Figure 1(a). The first modification to the prototype filter is to extract the b0 feedforward coefficient...

## Somewhat Off Topic: Deciphering Transistor Terminology

I recently learned something mildly interesting about transistors, so I thought I'd share my new knowledge with you folks. Figure 1 shows a p-n-p transistor comprising a small block of n-type semiconductor sandwiched between two blocks of p-type semiconductor.

The terminology of "emitter" and "collector" seems appropriate, but did you ever wonder why the semiconductor block in the center is called the "base"? The word base seems inappropriate because the definition of the word base is:...

## Reducing IIR Filter Computational Workload

This blog describes a straightforward method to significantly reduce the number of necessary multiplies per input sample of traditional IIR lowpass and highpass digital filters.

Reducing IIR Filter Computations Using Dual-Path Allpass Filters

We can improve the computational speed of a lowpass or highpass IIR filter by converting that filter into a dual-path filter consisting of allpass filters as shown in Figure 1.

...## A Lesson In Engineering Humility

Let's assume you were given the task to design and build the 12-channel telephone transmission system shown in Figure 1.

Figure 1

At a rate of 8000 samples/second, each telephone's audio signal is sampled and converted to a 7-bit binary sequence of pulses. The analog signals at Figure 1's nodes A, B, and C are presented in Figure 2.

Figure 2

I'm convinced that some of you subscribers to this dsprelated.com web site could accomplish such a design & build task....## A Quadrature Signals Tutorial: Complex, But Not Complicated

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...

## Sum of Two Equal-Frequency Sinusoids

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...

## A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters

This blog discusses the behavior, mathematics, and implementation of cascaded integrator-comb filters.

Cascaded integrator-comb (CIC) digital filters are computationally-efficient implementations of narrowband lowpass filters, and are often embedded in hardware implementations of decimation, interpolation, and delta-sigma converter filtering.

After describing a few applications of CIC filters, this blog introduces their structure and behavior, presents the frequency-domain...

## Computing FFT Twiddle Factors

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...

## Digital Envelope Detection: The Good, the Bad, and the Ugly

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...

## Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm

If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.

Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:

$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...## Understanding the 'Phasing Method' of Single Sideband Demodulation

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...

## The DFT Magnitude of a Real-valued Cosine Sequence

This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.

To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...

## FFT Interpolation Based on FFT Samples: A Detective Story With a Surprise Ending

This blog presents several interesting things I recently learned regarding the estimation of a spectral value located at a frequency lying between previously computed FFT spectral samples. My curiosity about this FFT interpolation process was triggered by reading a spectrum analysis paper written by three astronomers [1].

My fixation on one equation in that paper led to the creation of this blog.

Background

The notion of FFT interpolation is straightforward to describe. That is, for example,...

## The Number 9, Not So Magic After All

This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.

For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...

## A Quadrature Signals Tutorial: Complex, But Not Complicated

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...

## Understanding the 'Phasing Method' of Single Sideband Demodulation

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...

## Sum of Two Equal-Frequency Sinusoids

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...

## Digital Envelope Detection: The Good, the Bad, and the Ugly

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...

## Computing FFT Twiddle Factors

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...

## Free DSP Books on the Internet

While surfing the "net" I have occasionally encountered signal processing books whose chapters could be downloaded to my computer. I started keeping a list of those books and, over the years, that list has grown to over forty books. Perhaps the list will be of interest to you.

Please know, all of the listed books are copyrighted. The copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As...

## Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm

If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.

Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:

$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...## The DFT Magnitude of a Real-valued Cosine Sequence

This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.

To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...

## Linear-phase DC Removal Filter

This blog describes several DC removal networks that might be of interest to the dsprelated.com readers.

Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a time-domain sequence [1]. Discussed in that thread was the notion of removing a signal's DC bias by subtracting the signal's moving average from that signal, as shown in Figure 1(a).

Figure 1.

At first I thought...

## A Differentiator With a Difference

Some time ago I was studying various digital differentiating networks, i.e., networks that approximate the process of taking the derivative of a discrete time-domain sequence. By "studying" I mean that I was experimenting with various differentiating filter coefficients, and I discovered a computationally-efficient digital differentiator. A differentiator that, for low fequency signals, has the power of George Foreman's right hand! Before I describe this differentiator, let's review a few...