## Impulse Response Approximation

Recently, I stumbled upon a stepped-triangular (ST) approximation that can be implemented as a cascade of recursive running sum (RRS) filters. The following is a short introduction to the stepped-triangular approximation.The stepped-triangular approximation was introduced by Jovanovic-Dolecek and Mitra [1] as a quantized approximation of a low-pass filter (LPF). Figure 1 shows an example of the approximation.

[Figure 1: Stepped Approximation of a LPF...

## Multiplying Two Binary Numbers

I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.

Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...

## Implementing a full-duplex UART using the TMS320VC33 serial port

Although the TMS320VC33 serial port was designed to be used as a synchronous port, it can also be used as an asynchronous port under software control. This post describes the hardware and software needed to use a TMS320VC33 serial port as a full-duplex UART port. A schematic diagram and a lengthy code listing are provided to illustrate the solution. This note discusses the implementation of an interrupt-driven, full-duplex, asynchronous serial interface, 9600-baud UART with 8 data bits, 1...

## "Neat" Rectangular to Polar Conversion Algorithm

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:

## Improved Narrowband Lowpass IIR Filters

Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.

Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...

## Least-squares magic bullets? The Moore-Penrose Pseudoinverse

Hello,

the topic of this brief article is a tool that can be applied to a variety of problems: The Moore-Penrose Pseudoinverse.While maybe not exactly a magic bullet, it gives us least-squares optimal solutions, and that is under many circumstances the best we can reasonably expect.

I'll demonstrate its use on a short example. More details can be found for example on Wikipedia, or the Matlab documentation...

## Computing FFT Twiddle Factors

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...

## Hidden Linear Algebra in DSP

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...

## Computing an FFT of Complex-Valued Data Using a Real-Only FFT Algorithm

Someone recently asked me if I knew of a way to compute a fast Fourier transform (FFT) of complex-valued input samples using an FFT algorithm that accepts only real-valued input data. Knowing of no way to do this, I rifled through my library of hardcopy FFT articles looking for help. I found nothing useful that could be applied to this problem.

After some thinking, I believe I have a solution to this problem. Here is my idea:

Let's say our original input data is the complex-valued sequence...

## Unit Testing for Embedded Algorithms

Happy Holidays! For my premier article, I am writing about my favorite technique to use when designing and developing software- unit testing. Unit testing is a best practice when designing software. It allows the designer to verify the behavior of the software units before the entire system is complete, and it facilitates the change and growth of the software system because the developer can verify that the changes will not affect the behavior of other parts of the system. I have used...

## Harmonic Notch Filter

My basement is covered with power lines and florescent lights which makes collecting ECG and EEG data rather difficult due to the 60 cycle hum. I found the following notch filter to work very well at eliminating the background signal without effecting the highly amplified signals I was looking for.

The notch filter is based on the a transfer function with the form $$H(z)=\frac{1}{2}(1+A(z))$$ where A(z) is an all pass filter. The original paper [1] describes a method to...

## Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved

This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.

Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...

## Computing Chebyshev Window Sequences

Chebyshev windows (also called Dolph-Chebyshev, or Tchebyschev windows), have several useful properties. Those windows, unlike the fixed Hanning, Hamming, or Blackman window functions, have adjustable sidelobe levels. For a given user-defined sidelobe level and window sequence length, Chebyshev windows yield the most narrow mainlobe compared to any fixed window functions.

However, for some reason, detailed descriptions of how to compute Chebyshev window sequences are not readily available...

## Improved Narrowband Lowpass IIR Filters

Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.

Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...

## Hidden Linear Algebra in DSP

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...

## Impulse Response Approximation

Recently, I stumbled upon a stepped-triangular (ST) approximation that can be implemented as a cascade of recursive running sum (RRS) filters. The following is a short introduction to the stepped-triangular approximation.The stepped-triangular approximation was introduced by Jovanovic-Dolecek and Mitra [1] as a quantized approximation of a low-pass filter (LPF). Figure 1 shows an example of the approximation.

[Figure 1: Stepped Approximation of a LPF...

## Instant CIC

Summary:

A floating point model for a CIC decimator, including the frequency response.

Description:

A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.

One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...

## Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT

Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.

Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...

## "Neat" Rectangular to Polar Conversion Algorithm

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:

## A Remarkable Bit of DFT Trivia

I recently noticed a rather peculiar example of discrete Fourier transform (DFT) trivia; an unexpected coincidence regarding the scalloping loss of the DFT. Here's the story.

DFT SCALLOPING LOSS As you know, if we perform an N-point DFT on N real-valued time-domain samples of a discrete sine wave, whose frequency is an integer multiple of fs/N (fs is the sample rate in Hz), the peak magnitude of the sine wave's positive-frequency spectral component will be

where A is the peak amplitude...

## Specifying the Maximum Amplifier Noise When Driving an ADC

I recently learned an interesting rule of thumb regarding the use of an amplifier to drive the input of an analog to digital converter (ADC). The rule of thumb describes how to specify the maximum allowable noise power of the amplifier [1].

The Problem Here's the situation for an ADC whose maximum analog input voltage range is –VRef to +VRef. If we drive an ADC's analog input with an sine wave whose peak amplitude is VP = VRef, the ADC's output signal to noise ratio is maximized. We'll...

## Computing Translated Frequencies in Digitizing and Downsampling Analog Bandpass Signals

In digital signal processing (DSP) we're all familiar with the processes of bandpass sampling an analog bandpass signal and downsampling a digital bandpass signal. The overall spectral behavior of those operations are well-documented. However, mathematical expressions for computing the translated frequency of individual spectral components, after bandpass sampling or downsampling, are not available in the standard DSP textbooks. The following three sections explain how to compute the...

## Resolving 'Can't initialize target CPU' on TI C6000 DSPs - Part 2

Configuration

The previous article discussed CCS configuration. The prerequisite for the following discussion is a valid CCS configuration file. All references will be for CCS 3.3, but they may be used or adapted to other versions of CCS. From the previous discussion, we know that the configuration file is located at 'C:\CCStudio_v3.3\cc\bin\brddat\ccBrd0.dat'.

XDS510 Emulators

Initial discussion will address only XDS510 class emulators that support TI drivers and utilities. This will...

## A Remarkable Bit of DFT Trivia

I recently noticed a rather peculiar example of discrete Fourier transform (DFT) trivia; an unexpected coincidence regarding the scalloping loss of the DFT. Here's the story.

DFT SCALLOPING LOSS As you know, if we perform an N-point DFT on N real-valued time-domain samples of a discrete sine wave, whose frequency is an integer multiple of fs/N (fs is the sample rate in Hz), the peak magnitude of the sine wave's positive-frequency spectral component will be

where A is the peak amplitude...

## Harmonic Notch Filter

My basement is covered with power lines and florescent lights which makes collecting ECG and EEG data rather difficult due to the 60 cycle hum. I found the following notch filter to work very well at eliminating the background signal without effecting the highly amplified signals I was looking for.

The notch filter is based on the a transfer function with the form $$H(z)=\frac{1}{2}(1+A(z))$$ where A(z) is an all pass filter. The original paper [1] describes a method to...

## "Neat" Rectangular to Polar Conversion Algorithm

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:

## A brief look at multipath radio channels

Summary: Discussion of multipath propagation and fading in radio links

Radio channels, their effects on communications links and how to model them are a popular topic on comp.dsp. Unfortunately, for many of us there is little or no opportunity to get any "hands-on" experience with radio-related issues, because the required RF measurement equipment is not that easily available.This article gives a very simple example of a radio link that shows multipath propagation and...

## Computing an FFT of Complex-Valued Data Using a Real-Only FFT Algorithm

Someone recently asked me if I knew of a way to compute a fast Fourier transform (FFT) of complex-valued input samples using an FFT algorithm that accepts only real-valued input data. Knowing of no way to do this, I rifled through my library of hardcopy FFT articles looking for help. I found nothing useful that could be applied to this problem.

After some thinking, I believe I have a solution to this problem. Here is my idea:

Let's say our original input data is the complex-valued sequence...

## Instant CIC

Summary:

A floating point model for a CIC decimator, including the frequency response.

Description:

A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.

One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...

## Hidden Linear Algebra in DSP

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...