## Implementation of Algorithms on FPGAs

This thesis describes how an algorithm is transferred from a digital signal processor to an embedded microprocessor in an FPGA using C to hardware program from Altera. Saab Avitronics develops the secondary high lift control system for the Boeing 787 aircraft. The high lift system consists of electric motors controlling the trailing edge wing flaps and the leading edge wing slats. The high lift motors manage to control the Boeing 787 aircraft with full power even if half of each motor’s stators are damaged. The motor is a PMDC brushless motor which is controlled by an advanced algorithm. The algorithm needs to be calculated by a fast special digital signal processor. In this thesis I have tested if the algorithm can be transferred to an FPGA and still manage the time and safety demands. This was done by transferring an already working algorithm from the digital signal processor to an FPGA. The idea was to put the algorithm in an embedded NIOS II microprocessor and speed up the bottlenecks with Altera’s C to hardware program. The study shows that the C-code needs to be optimized for C to hardware to manage the up speeding part, as the tests showed that the calculation time for the algorithm actually became longer with C to hardware. This thesis also shows that it is highly probable to use an FPGA equipped with Altera’s NIOS II safety critical microprocessor instead of a digital signal processor to control the electrical high lift motors in the Boeing 787 aircraft.

## DSP Platform Benchmarking

●1 commentBenchmarking of DSP kernel algorithms was conducted in the thesis on a DSP processor for teaching in the course TESA26 in the department of Electrical Engineering. It includes benchmarking on cycle count and memory usage. The goal of the thesis is to evaluate the quality of a single MAC DSP instruction set and provide suggestions for further improvement in instruction set architecture accordingly. The scope of the thesis is limited to benchmark the processor only based on assembly coding. The quality check of compiler is not included. The method of the benchmarking was proposed by BDTI, Berkeley Design Technology Incorporations, which is the general methodology used in world wide DSP industry. Proposals on assembly instruction set improvements include the enhancement of FFT and DCT. The cycle cost of the new FFT benchmark based on the proposal was XX% lower, showing that the proposal was right and qualified. Results also show that the proposal promotes the cycle cost score for matrix computing, especially matrix multiplication. The benchmark results were compared with general scores of single MAC DSP processors offered by BDTI.

## Efficient arithmetic for high speed DSP implementation on FPGAs

The author was sponsored by EnTegra Ltd, a company who develop hardware and software products and services for the real time implementation of DSP and RF systems. The field programmable gate array (FPGA) is being used increasingly in the field of DSP. This is due to the fact that the parallel computing power of such devices is ideal for today’s truly demanding DSP algorithms. Algorithms such as the QR-RLS update are computationally intensive and must be carried out at extremely high speeds (MHz). This means that the DSP processor is simply not an option. ASICs can be used but the expense of developing custom logic is prohibitive. The increased use of the FPGA in DSP means that there is a significant requirement for efficient arithmetic cores that utilises the resources on such devices. This thesis presents the research and development effort that was carried out to produce fixed point division and square root cores for use in a new Electronic Design Automation (EDA) tool for EnTegra, which is targeted at FPGA implementation of DSP systems. Further to this, a new technique for predicting the accuracy of CORDIC systems computing vector magnitudes and cosines/sines is presented. This work allows the most efficient CORDIC design for a specified level of accuracy to be found quickly and easily without the need to run lengthy simulations, as was the case before. The CORDIC algorithm is a technique using mainly shifts and additions to compute many arithmetic functions and is thus ideal for FPGA implementation.

## Algorithm Adaptation and Optimization of a Novel DSP Vector Co-processor

The Division of Computer Engineering at Linköping's university is currently researching the possibility to create a highly parallel DSP platform, that can keep up with the computational needs of upcoming standards for various applications, at low cost and low power consumption. The architecture is called ePUMA and it combines a general RISC DSP master processor with eight SIMD co-processors on a single chip. The master processor will act as the main processor for general tasks and execution control, while the co-processors will accelerate computing intensive and parallel DSP kernels.This thesis investigates the performance potential of the co-processors by implementing matrix algebra kernels for QR decomposition, LU decomposition, matrix determinant and matrix inverse, that run on a single co-processor. The kernels will then be evaluated to find possible problems with the co-processors' microarchitecture and suggest solutions to the problems that might exist. The evaluation shows that the performance potential is very good, but a few problems have been identified, that causes significant overhead in the kernels. Pipeline mismatches, that occurs due to different pipeline lengths for different instructions, causes pipeline hazards and the current solution to this, doesn't allow effective use of the pipeline. In some cases, the single port memories will cause bottlenecks, but the thesis suggests that the situation could be greatly improved by using buffered memory write-back. Also, the lack of register forwarding makes kernels with many data dependencies run unnecessarily slow.

## Implementation of Elementary Functions for a Fixed Point SIMD DSP Coprocessor

This thesis is about implementing the functions for reciprocal, square root, inverse square root and logarithms on a DSP platform. A multi-core DSP platform that consists of one master processor core and several SIMD coprocessor cores is currently being designed by a team at the Computer Engineering Department of Linköping University. The SIMD coprocessors’ arithmetic logic unit (ALU) has 16 multipliers to support vector multiplication instructions. By efficiently using the 16 multipliers, it is possible to evaluate polynomials very fast. The ALU does not have (hardware) support for floating point arithmetic, so the challenge is to get good precision by using fixed point arithmetic. Precise and fast solutions to implement the mathematical functions are found by converting the fixed point input to a soft floating point format before polynomial approximation, choosing a polynomial based on an error analysis of the polynomial approximation, and using Newton-Raphson or Goldschmidt iterations to improve the precision of the polynomial approximations. Finally, suggestions are made of changes and additions to the instruction set architecture, in order to make the implementations faster, by efficiently using the currently existing hardware.

## Benchmarking a DSP processor

This Master thesis describes the benchmarking of a DSP processor. Benchmarking means measuring the performance in some way. In this report, we have focused on the number of instruction cycles needed to execute certain algorithms. The algorithms we have used in the benchmark are all very common in signal processing today. The results we have reached in this thesis have been compared to benchmarks for other processors, performed by Berkeley Design Technology, Inc. The algorithms were programmed in assembly code and then executed on the instruction set simulator. After that, we proposed changes to the instruction set, with the aim to reduce the execution time for the algorithms. The results from the benchmark show that our processor is at the same level as the ones tested by BDTI. Probably would a more experienced programmer be able to reduce the cycle count even more, especially for some of the more complex benchmarks.

## Correlation and Power Spectrum

In the signals and systems course and in the first course in digital signal processing, a signal is, most often, characterized by its amplitude spectrum in the frequency-domain and its amplitude profile in the time-domain. So much a student gets used to this type of characterization, that the student finds it difficult to appreciate, when encountered in the ensuing statistical signal processing course, the fact that a signal can also be characterized by its autocorrelation function in the time-domain and the corresponding power spectrum in the frequency-domain and that the amplitude characterization is not available. In this article, the characterization of a signal by its autocorrelation function in the time-domain and the corresponding power spectrum in the frequency-domain is described. Cross-correlation of two signals is also presented.

## Digital Signal Processing Maths

●1 commentModern digital signal processing makes use of a variety of mathematical techniques. These techniques are used to design and understand efficient filters for data processing and control.

## DSP Memory Management in a Third Generation High Performance Base Station

Most of the tasks in a mobile cellular network base station are performed with programmable digital signal processors. Their memory spaces and management features are very limited. The buffering requirements in the base station can have large instantaneous variations during the simultaneous transmission of burst' data on multiple channels to multiple users. In particular the high bit-rates of the Wideband Code Division Multiple Access data transfer evolution High Speed Downlink Packet Access create very high demands for buffering. The fragmentation of the buffer memory is a threat. It causes a gradual decrease in performance, which is critical in a long running process like the base station. The amount of fragmentation is different with different memory management methods. In this work the features and applicability of different memory management methods for signal processors used in the base stations of third generation cellular networks have been studied. Software based memory management includes a high amount of conditional branches. The signal processor, which is optimized for highly parallel sequential computing, executes conditional branches very badly when compared to microcontrollers and general-purpose processors. The memory management methods are first studied in theory and then experimentally. In the experiments two different memory management methods were analyzed. The memory managers were loaded with a synthetic workload program that simulates multi-user high bit-rate data transmissions in the base station. The performances of the memory managers were measured in terms of fragmentation, execution time and memory utilization. The experiments confirmed the information gained from the theoretical studies that different memory management methods are usually optimized for a certain feature. The experiments showed that a simple method is fast to execute and works well with small and intermediate loads. When the load is increased the performance decreases. The second, more complex, measured method was found to require more computing, but to be capable of using the memory space assigned to it more effectively.

## EngD thesis: Reduced-Complexity Signal Detection in Digital Communications Receivers

The Author began this Engineering Doctorate (EngD) in Autumn 1999, whilst already in full-time employment as a DSP software engineer at Nortel Networks, Harlow. This EngD comprises a set of three projects. The first project was focused on the development of dual-tone multi-frequency (DTMF) signal detection software. DTMF signals are currently used for operating menu-driven services such as voice-mail, telephone banking and share-dealing. The need for detection software in a packet networking environment exists because such signals become degraded when they travel through speech compression circuits. In addition, if they appear as echoes on a telephone line, they can affect the operation of echo cancellation systems. In this thesis a number of DSP algorithms are discussed where fast detection and minimum complexity are key characteristics. A key contribution here was the development of a novel detection algorithm based on the extraction of parameters that model the DTMF signal. The thesis reports a method combining parameter extraction with the technique of maximum likelihood to perform DTMF detection, resulting in very short time-frames when compared to standard approaches. Reducing the complexity of detection techniques is also important in today’s communication systems. To this end a key contribution here was the development of the ‘split Goertzel algorithm’, which permitted an overlapping of analysis windows without the need for reprocessing input data. Besides being applied to voice-band signals, such as in the case of DTMF, the Author also had the opportunity during the EngD to apply the skills and knowledge acquired in signal processing to higher-rate data-streams. This involved work concerning the equalisation of channel distortion commonly found in wireless communication systems. This covers two projects, with the first being conducted at Verticalband Ltd. (now no longer operational) in the area of digital television receivers. In this part of the thesis a real-time DSP implementation is discussed for enhancing a simulation system developed for wireless channels. A number of channel equalisation approaches are studied. The work concludes that for high-rate signals, non-linear algorithms have the best error rate performance. On the basis of the studies carried out, the thesis considers development and implementation issues of designs based on the decision feedback equaliser. The thesis reports on a software design which applies the method of least squares to carry out filter coefficient adaptation. The Verticalband studies reported lead on to further research within the context of channel equalisation, in the context of the detection of data in multiple-input multiple-output (MIMO) wireless local area network (WLAN) systems. This work was undertaken at Philips Research in Eindhoven, The Netherlands. The thesis discusses implementation scenarios of multi-element antenna arrays that aim to provide bit-rates orders of magnitude higher than today’s WLAN offerings, as those required by emerging standards such as 802.11n. The complexity of optimal detection techniques, such as maximum likelihood, scales exponentially with the number of transmit antennas. This translates to high processing costs and power consumption, rendering such techniques unsuitable for use in battery-powered devices. The initial main contribution here was the analysis of the complexity of algorithms whose performance had already been tested, such as the non-linear maximum likelihood approach and also less complex methods utilising linear filtering. This resulted in the development of new formulae to predict processing costs of algorithms based on the number of transmit and receive antennas. Other key contributions were defining a method to reduce the complexity of matrix inversion when using the Moore-Penrose pseudo-inverse, and the application of matrix decomposition to obviate the need for costly matrix inversion at all. Some on-going research into sub-optimal detection is also discussed, which describes methods to reduce the search-space for the maximum likelihood algorithm.

## Auditory System for a Mobile Robot

●3 commentsThe auditory system of living creatures provides useful information about the world, such as the location and interpretation of sound sources. For humans, it means to be able to focus one's attention on events, such as a phone ringing, a vehicle honking, a person taking, etc. For those who do not suffer from hearing impairments, it is hard to imagine a day without being able to hear, especially in a very dynamic and unpredictable world. Mobile robots would also benefit greatly from having auditory capabilities. In this thesis, we propose an artificial auditory system that gives a robot the ability to locate and track sounds, as well as to separate simultaneous sound sources and recognising simultaneous speech. We demonstrate that it is possible to implement these capabilities using an array of microphones, without trying to imitate the human auditory system. The sound source localisation and tracking algorithm uses a steered beamformer to locate sources, which are then tracked using a multi-source particle filter. Separation of simultaneous sound sources is achieved using a variant of the Geometric Source Separation (GSS) algorithm, combined with a multisource post-filter that further reduces noise, interference and reverberation. Speech recognition is performed on separated sources, either directly or by using Missing Feature Theory (MFT) to estimate the reliability of the speech features. The results obtained show that it is possible to track up to four simultaneous sound sources, even in noisy and reverberant environments. Real-time control of the robot following a sound source is also demonstrated. The sound source separation approach we propose is able to achieve a 13.7 dB improvement in signal-to-noise ratio compared to a single microphone when three speakers are present. In these conditions, the system demonstrates more than 80% accuracy on digit recognition, higher than most human listeners could obtain in our small case study when recognising only one of these sources. All these new capabilities will allow humans to interact more naturally with a mobile robot in real life settings.

## Optimization of Synthesis Oversampled Complex Filter Banks

An important issue with oversampled FIR analysis filter banks (FBs) is to determine inverse synthesis FBs, when they exist. Given any complex oversampled FIR analysis FB, we first provide an algorithm to determine whether there exists an inverse FIR synthesis system. We also provide a method to ensure the Hermitian symmetry property on the synthesis side, which is serviceable to processing real-valued signals. As an invertible analysis scheme corresponds to a redundant decomposition, there is no unique inverse FB. Given a particular solution, we parameterize the whole family of inverses through a null space projection. The resulting reduced parameter set simplifies design procedures, since the perfect reconstruction constrained optimization problem is recast as an unconstrained optimization problem. The design of optimized synthesis FBs based on time or frequency localization criteria is then investigated, using a simple yet efficient gradient algorithm.

## Interaction with Sound and Pre-Recorded Music: Novel Interfaces and Use Patterns

Computers are changing the way sound and recorded music are listened to and used. The use of computers to playback music makes it possible to change and adapt music to different usage situations in ways that were not possible with analog sound equipment. In this thesis, interaction with pre-recorded music is investigated using prototypes and user studies. First, different interfaces for browsing music on consumer or mobile devices were compared. It was found that the choice of input controller, mapping and auditory feedback influences how the music was searched and how the interfaces were perceived. Search performance was not affected by the tested interfaces. Based on this study, several ideas for the future design of music browsing interfaces were proposed. Indications that search time depends linearly on distance to target were observed and examined in a related study where a movement time model for searching in a text document using scrolling was developed. Second, work practices of professional disc jockeys (DJs) were studied and a new design for digital DJing was proposed and tested. Strong indications were found that the use of beat information could reduce the DJ’s cognitive workload while maintaining flexibility during the musical performance. A system for automatic beat extraction was designed based on an evaluation of a number of perceptually important parameters extracted from audio signals. Finally, auditory feedback in pen-gesture interfaces was investigated through a series of informal and formal experiments. The experiments point to several general rules of auditory feedback in pen-gesture interfaces: a few simple functions are easy to achieve, gaining further performance and learning advantage is difficult, the gesture set and its computerized recognizer can be designed to minimize visual dependence, and positive emotional or aesthetic response can be achieved using musical auditory feedback.

## Multirate Signal Processing Concepts in Digital Communications

Multirate systems are building blocks commonly used in digital signal processing (DSP). Their function is to alter the rate of the discrete-time signals, by adding or deleting a portion of the signal samples. They are essential in various standard signal processing techniques such as signal analysis, denoising, compression and so forth. During the last decade, however, they have increasingly found applications in new and emerging areas of signal processing, as well as in several neighboring disciplines such as digital communications. The main contribution of this thesis is aimed towards a better understanding of multirate systems and their use in modern communication systems. To this end, we first study a property of linear systems appearing in certain multirate structures. This property is called biorthogonal partnership and represents a terminology introduced recently to address a need for a descriptive term for such class of filters. In the thesis we especially focus on the extensions of this simple idea to the case of vector signals (MIMO biorthogonal partners) and to accommodate for nonintegral decimation ratios (fractional biorthogonal partners). The main results developed here study the properties of biorthogonal partners, e.g., the conditions for the existence of stable and of finite impulse response (FIR) partners. In this context we develop the parameterization of FIR solutions, which makes the search for the best partner in a given application analytically tractable. This proves very useful in their central application, namely, channel equalization in digital communications with signal oversampling at the receiver. A good channel equalizer in this context is one that helps neutralize the distortion on the signal introduced by the channel propagation but not at the expense of amplifying the channel noise. In the second part of the thesis, we focus on another class of multirate systems, used at the transmitter side in order to introduce redundancy in the data stream. This redundancy generally serves to facilitate the equalization process by forcing certain structure on the transmitted signal. We first consider the transmission systems that introduce the redundancy in the form of a cyclic prefix. The examples of such systems include the discrete multitone (DMT) and the orthogonal frequency division multiplexing (OFDM) systems. We study the signal precoding in such systems, aimed at improving the performance by minimizing the noise power at the receiver. We also consider a different class of communication systems with signal redundancy, namely, the multiuser systems based on code division multiple access (CDMA). We specifically focus on the special class of CDMA systems called `a mutually orthogonal usercode receiver' (AMOUR). We show how to find the best equalizer from the class of zero-forcing solutions in such systems, and then increase the size of this class by employing alternative sampling strategies at the receiver.

## An FPGA Implementation of Hierarchical Motion Estimation for Embedded Oject Tracking

This paper presents the hardware implementation of an algorithm developed to provide automatic motion detection and object tracking functionality embedded within intelligent CCTV systems. The implementation is targeted at an Altera Stratix FPGA making full use of the dedicated DSP resource. The Altera Nios embedded processor provides a platform for the tracking control loop and generic Pan Tilt Zoom camera interface. This paper details the explicit functional stages of the algorithm that lend themselves to an optimised pipelined hardware implementation. This implementation provides maximum data throughput, providing real-time operation of the described algorithm, and enables a moving camera to track a moving object in real time.

## Hidden Markov Model based recognition of musical pattern in South Indian Classical Music

Automatic recognition of musical patterns plays a crucial part in Musicological and Ethno musicological research and can become an indispensable tool for the search and comparison of music extracts within a large multimedia database. This paper finds an efficient method for recognizing isolated musical patterns in a monophonic environment, using Hidden Markov Model. Each pattern, to be recognized, is converted into a sequence of frequency jumps by means of a fundamental frequency tracking algorithm, followed by a quantizer. The resulting sequence of frequency jumps is presented to the input of the recognizer which use Hidden Markov Model. The main characteristic of Hidden Markov Model is that it utilizes the stochastic information from the musical frame to recognize the pattern. The methodology is tested in the context of South Indian Classical Music, which exhibits certain characteristics that make the classification task harder, when compared with Western musical tradition. Recognition of 100% has been obtained for the six typical music pattern used in practise. South Indian classical instrument, flute is used for the whole experiment.

## Design and implementation of odd-order wave digital lattice lowpass filters, from specifications to Motorol DSP56307EVM module

This thesis is dedicated to applying and developing explicit formulas for the design and implementation of odd-order lattice Lowpass wave digital filters (WDFs) on a Digital Signal Processor (DSP), such as a Motorola DSP56307EVM (Evaluation Module). The direct design method of Gazsi for filter types such as Butterworfh, Chebyshev, inverse Chebyshev, and Cauer (Elliptic) provides a straightforward method for calculating the coefficients without an extensive knowledge of digital signal processing. A program package to design and implement odd-order WDFs, including detailed procedures and examples, is presented in this thesis and includes not only the calculations of the coefficients, but also the simulation on a MATLAB platform and an implementation on a Motorola DSP56307EVM board. It is very quick, effective and convenient to obtain the coefficients when the user enters a few parameters according to the general specifications; to verify the characteristics of the designed filter; to simulate the filter on the MATLAB platform; to implement the filter on the DSP board; and to compare the results between the simulation and the implementation.

## Blind Adaptive Dereverberation of Speech Signals Using a Microphone Array

In this thesis, we present a blind adaptive speech dereverberation method based on the use of a reduced mutually referenced equalizers (RMRE) criterion. The method is based on the idea of the inversion of single-input multiple-output FIR linear systems, and as such requires the use of multiple microphones. However, unlike many traditional microphone array methods, there is no need for a specific array configuration or geometry. The RMRE method finds a subset of equalizers for a given delay in a single step, without the need for the typical channel estimation step. This makes the method practical in terms of implementation and avoids the pitfalls of the more complicated two step dereverberation approach, typical in many inversion methods. Additionally, only the second-order statistics of the signals recorded by the microphones are used, without the need for utilizing higher-order statistics information typically needed when the channsls have a nonminimum phase response, as is the case with room impulse responses. We present simulations and experimental results that demonstrate the applicability of the method when the input is speech, and show that in the noiseless case, perfect dereverberation can be achieved. We also evaluate its performance in the presence of noise, and we present a possible way to modify the proposed RMRE to work for very low SNR values. We also explore the problems when model-order mismatches are present, and demonstrate that the under-modeling of the channel impulse responses order can be combated by increasing the number of microphones. For order over-estimation, we will show that RMRE can handle such errors with no modification.

## Ignal Enhancement Using Time-Frequency Based Denoising

This thesis investigates and compares time and wavelet-domain denoising techniques where received signals contain broadband noise. We consider how time and wavelet-domain denoising schemes and their combinations compare in the mean squared error sense. This work applies Wiener prediction and Median filtering as they do not require any prior signal knowledge. In the wavelet-domain we use soft or hard thresholding on the detail coefficients. In addition, we explore the effect of these wavelet-domain thresholding techniques on the coefficients associated with cycle-spinning and the newly proposed recursive cycle-spinning scheme. Finally, we note that thresholding does not make an attempt to de-noise coefficients that remain after thresholding; therefore we apply time domain techniques to the remaining detail coefficients from the first level of decomposition in an attempt to de-noise them further prior to reconstruction. This thesis applies and compares these techniques using a mean squared error criterion to identify the best performing in a robust test signal environment. We find that soft thresholding with Stein’s Unbiased Risk Estimate (SURE) thresholding produces the best mean squared error results in each test case and that the addition of Wiener prediction to the first level of decomposition coefficients leads to a slightly enhanced performance. Finally, we illustrate the effects of denoising algorithms on longer data segments.

## Wavelet Filter Banks in Perceptual Audio Coding

●7 commentsThis thesis studies the application of the wavelet filter bank (WFB) in perceptual audio coding by providing brief overviews of perceptual coding, psychoacoustics, wavelet theory, and existing wavelet coding algorithms. Furthermore, it describes the poor frequency localization property of the WFB and explores one filter design method, in particular, for improving channel separation between the wavelet bands. A wavelet audio coder has also been developed by the author to test the new filters. Preliminary tests indicate that the new filters provide some improvement over other wavelet filters when coding audio signals that are stationary-like and contain only a few harmonic components, and similar results for other types of audio signals that contain many spectral and temporal components. It has been found that the WFB provides a flexible decomposition scheme through the choice of the tree structure and basis filter, but at the cost of poor localization properties. This flexibility can be a benefit in the context of audio coding but the poor localization properties represent a drawback. Determining ways to fully utilize this flexibility, while minimizing the effects of poor time-frequency localization, is an area that is still very much open for research.