## Plotting Discrete-Time Signals

A discrete-time sinusoid can have frequency up to just shy of half the sample frequency. But if you try to plot the sinusoid, the result is not always recognizable. For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine. But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots. We typically want the plot of a sampled sinusoid to resemble its continuous-time version. To achieve this, we need to interpolate.

## 5G NR QC-LDPC Encoding Algorithm

3GPP 5G has been focused on structured LDPC codes known as quasi-cyclic low-density parity-check (QC-LDPC) codes, which exhibit advantages over other types of LDPC codes with respect to the hardware implementations of encoding and decoding using...

## Interpolation Basics

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal. Figure 1 illustrates what we mean by interpolation. The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts. The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1]. For example, if we increase the sample rate by the integer factor of four, the interpolated signal is as shown in the bottom plot. The time between samples has been decreased from Ts to Ts/4.

## Round-robin or RTOS for my embedded system

First of all, I would like to introduce myself. I am Manuel Herrera. I am starting to write blogs about the situations that I have faced over the years of my career and discussed with colleagues.To begin, I would like to open a conversation...

## Somewhat Off Topic: Deciphering Transistor Terminology

I recently learned something mildly interesting about transistors, so I thought I'd share my new knowledge with you folks. Figure 1 shows a p-n-p transistor comprising a small block of n-type semiconductor sandwiched between two blocks of p-type...

## DSP Jobs Soaring | Ready Your Interview Skills

Digital Signal Processing (DSP) technology is the cornerstone of most cutting edge technology today. For example, digital signal processing drives much of machine learning in artificial intelligence (AI). It also steers eyesight and movement...

## Generating Partially Correlated Random Variables

IntroductionIt is often useful to be able to generate two or more signals with specific cross-correlations. Or, more generally, we would like to specify an $\left(N \times N\right)$ covariance matrix, $\mathbf{R}_{xx}$, and generate $N$ signals...

## Stereophonic Amplitude-Panning: A Derivation of the "Tangent Law"

This article presents a derivation of the "Tangent Law"

## A Brief Introduction To Romberg Integration

This article briefly describes a remarkable integration algorithm, called "Romberg integration." The algorithm is used in the field of numerical analysis but it's not so well-known in the world of DSP.

## Evaluate Window Functions for the Discrete Fourier Transform

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum. For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT. Usually, you...

## Interpolation Basics

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal. Figure 1 illustrates what we mean by interpolation. The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts. The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1]. For example, if we increase the sample rate by the integer factor of four, the interpolated signal is as shown in the bottom plot. The time between samples has been decreased from Ts to Ts/4.

## Sinusoidal Frequency Estimation Based on Time-Domain Samples

The topic of estimating a noise-free real or complex sinusoid's frequency, based on fast Fourier transform (FFT) samples, has been presented in recent blogs here on dsprelated.com. For completeness, it's worth knowing that simple frequency estimation algorithms exist that do not require FFTs to be performed . Below I present three frequency estimation algorithms that use time-domain samples, and illustrate a very important principle regarding so called "exact" mathematically-derived DSP algorithms.

## Generating pink noise

In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music. The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple...

## 3 Good News

Good News #1 Last week, I announced a new and ambitious reward program that will be funded by the new Vendors Directory. This week, I am happy to announce that we have our firsts two sponsors! Quantum Leaps & Abelon Systems have...

## Model a Sigma-Delta DAC Plus RC Filter

Sigma-delta digital-to-analog converters (SD DAC’s) are often used for discrete-time signals with sample rate much higher than their bandwidth. For the simplest case, the DAC output is a single bit, so the only interface hardware required is a standard digital output buffer. Because of the high sample rate relative to signal bandwidth, a very simple DAC reconstruction filter suffices, often just a one-pole RC lowpass. In this article, I present a simple Matlab function that models the combination of a basic SD DAC and one-pole RC filter. This model allows easy evaluation of the overall performance for a given input signal and choice of sample rate, R, and C.

## Return of the Delta-Sigma Modulators, Part 1: Modulation

About a decade ago, I wrote two articles: Modulation Alternatives for the Software Engineer (November 2011) Isolated Sigma-Delta Modulators, Rah Rah Rah! (April 2013) Each of these are about delta-sigma modulation, but they’re...

## The Discrete Fourier Transform as a Frequency Response

The discrete frequency response H(k) of a Finite Impulse Response (FIR) filter is the Discrete Fourier Transform (DFT) of its impulse response h(n) [1]. So, if we can find H(k) by whatever method, it should be identical to the DFT of...

## Overview of my Articles

Introduction This article is a summary of all the articles I've written here at DspRelated. The main focus has always been an increased understanding of the Discrete Fourier Transform (DFT). The references are grouped by topic and ordered in...

## A DSP Quiz Question

Here's a DSP Quiz Question that I hope you find mildly interestingBACKGROUNDDue to the periodic natures an N-point discrete Fourier transform (DFT) sequence and that sequence’s inverse DFT, it is occasionally reasonable to graphically plot...

## ADC Clock Jitter Model, Part 2 – Random Jitter

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter. Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered...