## A Fast Real-Time Trapezoidal Rule Integrator

This article presents a computationally-efficient network for computing real?time discrete integration using the Trapezoidal Rule.

## Third-Order Distortion of a Digitally-Modulated Signal

Analog designers are always harping about amplifier third-order distortion. Why? In this article, we'll look at why third-order distortion is important, and simulate a QAM signal with third order distortion.

## A Narrow Bandpass Filter in Octave or Matlab

The design of a very narrow bandpass FIR filter, coded in either Octave or Matlab, can prove challenging if a computationally-efficient filter is required. This is especially true if the sampling rate is high relative to the filter's center...

## IIR Bandpass Filters Using Cascaded Biquads

In an earlier post [1], we implemented lowpass IIR filters using a cascade of second-order IIR filters, or biquads. This post provides a Matlab function to do the same for Butterworth bandpass IIR filters. Compared to conventional implementations, bandpass filters based on biquads are less sensitive to coefficient quantization [2]. This becomes important when designing narrowband filters.

## Second Order Discrete-Time System Demonstration

Discrete-time systems are remarkable: the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z). Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system. With a discrete-time model, we can then easily compute the time response to any input. But note that the goal here is as much to understand the discrete-time model as it is to find the response.

## A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters

This article discusses the behavior, mathematics, and implementation of cascaded integrator-comb filters.

## The correct answer to the quiz of @apolin

The correct answer to the @apolin quiz can be easily explained using the following Simulink model: In MATLAB you have to initialize the two filters: h = dftmtx (8); h1 = h (3, :); % The filter of the quiz h2 = h (7, :); % The...

## A Free DSP Laboratory

Getting Started In Audio DSPImagine you're starting out studying DSP and your particular interest is audio. Wouldn't it be nice to have access to some audio signals and the tools to analyze and modify them? In the old days, a laboratory like this...

## Polynomial calculations on an FIR filter engine, part 1

Polynomial evaluation is structurally akin to FIR filtering and fits dedicated filtering engines quite well, with certain caveats. It’s a technique that has wide applicability. This two-part note discusses transducer and amplifier non-linearity...

## Plotting Discrete-Time Signals

A discrete-time sinusoid can have frequency up to just shy of half the sample frequency. But if you try to plot the sinusoid, the result is not always recognizable. For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine. But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots. We typically want the plot of a sampled sinusoid to resemble its continuous-time version. To achieve this, we need to interpolate.

## Adventures in Signal Processing with Python

Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being...

## Multiplierless Half-band Filters and Hilbert Transformers

This article provides coefficients of multiplierless Finite Impulse Response 7-tap, 11-tap, and 15-tap half-band filters and Hilbert Transformers. Since Hilbert transformer coefficients are simply related to half-band coefficients, multiplierless Hilbert transformers are easily derived from multiplierless half-bands.

## Learn About Transmission Lines Using a Discrete-Time Model

We don’t often think about signal transmission lines, but we use them every day. Familiar examples are coaxial cable, Ethernet cable, and Universal Serial Bus (USB). Like it or not, high-speed clock and signal traces on...

## Multiplierless Exponential Averaging

This blog discusses an interesting approach to exponential averaging. To begin my story, a traditional exponential averager (also called a "leaky integrator"), shown in Figure 1(a), is commonly used to reduce noise fluctuations that contaminate...

## Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA. This situation is shown in Figure 1. Assuming your system has an...

## The Exponential Nature of the Complex Unit Circle

Introduction This is an article to hopefully give an understanding to Euler's magnificent equation: $$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$ This equation is usually proved using the Taylor series expansion for the given...

## Third-Order Distortion of a Digitally-Modulated Signal

Analog designers are always harping about amplifier third-order distortion. Why? In this article, we'll look at why third-order distortion is important, and simulate a QAM signal with third order distortion.

## A Two Bin Exact Frequency Formula for a Pure Complex Tone in a DFT

Introduction This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a complex tone in a DFT. It is basically a parallel treatment to the real case...

## Discrete-Time PLLs, Part 1: Basics

In this series of tutorials on discrete-time PLLs we will be focusing on Phase-Locked Loops that can be implemented in discrete-time signal proessors such as FPGAs, DSPs and of course, MATLAB.