## Understanding and Implementing the Sliding DFT

●4 commentsIntroduction In many applications the detection or processing of signals in the frequency domain offers an advantage over performing the same task in the time-domain. Sometimes the advantage is just a simpler or more conceptually...

## Why Time-Domain Zero Stuffing Produces Multiple Frequency-Domain Spectral Images

●3 commentsThis blog explains why, in the process of time-domain interpolation (sample rate increase), zero stuffing a time sequence with zero-valued samples produces an increased-length time sequence whose spectrum contains replications of the original...

## The Number 9, Not So Magic After All

This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers. For decades I've thought...

## Signed serial-/parallel multiplication

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm Summary A detailed discussion of bit-level trickstery in signed-signed multiplication Algorithm based on Wikipedia example Includes a Verilog implementation with...

## Goertzel Algorithm for a Non-integer Frequency Index

If you've read about the Goertzel algorithm, you know it's typically presented as an efficient way to compute an individual kth bin result of an N-point discrete Fourier transform (DFT). The integer-valued frequency index k is in the range of...

## Adventures in Signal Processing with Python

Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being...

## Polyphase Filters and Filterbanks

●2 commentsALONG CAME POLY Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling...

## Understanding and Relating E_{b}/N_{o}, SNR, and other Power Efficiency Metrics

●3 comments Introduction Evaluating the performance of communication systems, and wireless systems in particular, usually involves quantifying some performance metric as a function of Signal-to-Noise-Ratio (SNR) or some similar measurement. Many systems...

## Python scipy.signal IIR Filter Design

●2 commentsIntroduction The following is an introduction on how to design an infinite impulse response (IIR) filters using the Python scipy.signal package. This post, mainly, covers how to use the scipy.signal package and is not a thorough...

## Python number crunching faster? Part I

Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this...

## Signed serial-/parallel multiplication

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm Summary A detailed discussion of bit-level trickstery in signed-signed multiplication Algorithm based on Wikipedia example Includes a Verilog implementation with...

## Why Time-Domain Zero Stuffing Produces Multiple Frequency-Domain Spectral Images

●3 commentsThis blog explains why, in the process of time-domain interpolation (sample rate increase), zero stuffing a time sequence with zero-valued samples produces an increased-length time sequence whose spectrum contains replications of the original...

## The Number 9, Not So Magic After All

This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers. For decades I've thought...

## Wavelets II - Vanishing Moments and Spectral Factorization

●1 commentIn the previous blog post I described the workings of the Fast Wavelet Transform (FWT) and how wavelets and filters are related. As promised, in this article we will see how to construct useful filters. Concretely, we will find a way to calculate...

## Multi-Decimation Stage Filtering: Design and Optimization

●1 commentDuring my research on digital FIR decimation filters I have been developing various Matlab scripts and functions. In which I have decided later on to consolidate it in a form of a toolbox. I have developed this toolbox to assist and...

## Canonic Signed Digit (CSD) Representation of Integers

●1 commentIn my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients. I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD...

## Matlab Code to Synthesize Multiplierless FIR Filters

This article presents Matlab code to synthesize multiplierless Finite Impulse Response (FIR) lowpass filters. A filter coefficient can be represented as a sum of powers of 2. For example, if a coefficient = decimal 5 multiplies input x,...

## Discrete Wavelet Transform Filter Bank Implementation (part 2)

●1 commentFollowing the previous blog entry: http://www.dsprelated.com/showarticle/115.php Difference between DWT and DWPT Before getting to the equivalent filter obtention, I first want to talk about the difference between DWT(Discrete Wavelet...

## Wavelets I - From Filter Banks to the Dilation Equation

This is the first in what I hope will be a series of posts about wavelets, particularly about the Fast Wavelet Transform (FWT). The FWT is extremely useful in practice and also very interesting from a theoretical point of view. Of course there...

## An Astounding Digital Filter Design Application

I've recently encountered a digital filter design application that astonished me with its design flexibility, capability, and ease of use. The software is called the " ASN Filter Designer." After experimenting with a demo version of...