Orfanidis Textbooks are Available Online

Rick Lyons July 12, 2011

I have just learned that Sophocles J. Orfanidis, the well-known professor with the ECE Department of Rutgers University, has made two of his signal processing textbooks available for downloading on the Internet. The first textbook is: "Introduction to Signal Processing" available at: http://eceweb1.rutgers.edu/~orfanidi/intro2sp/

Happily, also available at the above web site are:

  • Errata for the textbook.
  • Homework Solutions Manual
  • Errata for Solutions...

Do Multirate Systems Have Transfer Functions?

Rick Lyons May 30, 20112 comments

The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].

Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...


Multiplying Two Binary Numbers

Rick Lyons March 16, 20117 comments

I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.

Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...


"Neat" Rectangular to Polar Conversion Algorithm

Rick Lyons November 15, 20105 comments

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:


Improved Narrowband Lowpass IIR Filters

Rick Lyons November 6, 20101 comment

Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.

Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...


Computing FFT Twiddle Factors

Rick Lyons August 8, 201017 comments

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...


Computing an FFT of Complex-Valued Data Using a Real-Only FFT Algorithm

Rick Lyons February 9, 20103 comments

Someone recently asked me if I knew of a way to compute a fast Fourier transform (FFT) of complex-valued input samples using an FFT algorithm that accepts only real-valued input data. Knowing of no way to do this, I rifled through my library of hardcopy FFT articles looking for help. I found nothing useful that could be applied to this problem.

After some thinking, I believe I have a solution to this problem. Here is my idea:

Let's say our original input data is the complex-valued sequence...


Some Thoughts on a German Mathematician

Rick Lyons January 11, 20106 comments

Carl Friedrich Gauss

Here are a few interesting facts about the great Carl Friedrich Gauss (1777-1855), considered by some historians to have been the world's greatest mathematician. The overused phrase of "genius" could, with full justification, be used to describe this man. (How many people do you know that could have discovered the law of quadratic reciprocity in number theory at the age seventeen years?) Gauss was so prolific that by some estimates he personally doubled the amount of...


Using Mason's Rule to Analyze DSP Networks

Rick Lyons August 31, 20096 comments

There have been times when I wanted to determine the z-domain transfer function of some discrete network, but my algebra skills failed me. Some time ago I learned Mason's Rule, which helped me solve my problems. If you're willing to learn the steps in using Mason's Rule, it has the power of George Foreman's right hand in solving network analysis problems.

This blog discusses a valuable analysis method (well known to our analog control system engineering brethren) to obtain the z-domain...


Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT

Rick Lyons January 13, 20095 comments

Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.

Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...


Errata for the book: 'Understanding Digital Signal Processing'

Rick Lyons October 4, 20175 comments
Errata 3rd Ed. International Version.pdfErrata 3rd Ed. International Version.pdf

This blog post provides, in one place, the errata for each of the many different Editions/Printings of my book Understanding Digital Signal Processing.

If you would like the errata for your copy of the book, merely scroll down and click on the appropriate red line below. For the American versions of the various Editions of the book you'll need to know the "Printing Number" of your copy of the...


A Complex Variable Detective Story – A Disconnect Between Theory and Implementation

Rick Lyons October 14, 2014

Recently I was in the middle of a pencil-and-paper analysis of a digital 5-tap FIR filter having complex-valued coefficients and I encountered a surprising and thought-provoking problem. So that you can avoid the algebra difficulty I encountered, please read on.

A Surprising Algebra Puzzle

I wanted to derive the H(ω) equation for the frequency response of my FIR digital filter whose complex coefficients were h0, h1, h2, h3, and h4. I could then test the validity of my H(ω)...


A Table of Digital Frequency Notation

Rick Lyons August 5, 2013

When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)

The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...


A Brief Introduction To Romberg Integration

Rick Lyons January 16, 201911 comments

This blog briefly describes a remarkable integration algorithm, called "Romberg integration." The algorithm is used in the field of numerical analysis but it's not so well-known in the world of DSP.

To show the power of Romberg integration, and to convince you to continue reading, consider the notion of estimating the area under the continuous x(t) = sin(t) curve based on the five x(n) samples represented by the dots in Figure 1.

The results of performing a Trapezoidal Rule, a...


Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT

Rick Lyons January 13, 20095 comments

Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.

Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...


Reducing IIR Filter Computational Workload

Rick Lyons May 24, 20195 comments

This blog describes a straightforward method to significantly reduce the number of necessary multiplies per input sample of traditional IIR lowpass and highpass digital filters.

Reducing IIR Filter Computations Using Dual-Path Allpass Filters

We can improve the computational speed of a lowpass or highpass IIR filter by converting that filter into a dual-path filter consisting of allpass filters as shown in Figure 1.

...

Controlling a DSP Network's Gain: A Note For DSP Beginners

Rick Lyons March 29, 201922 comments

This blog briefly discusses a topic well-known to experienced DSP practitioners but may not be so well-known to DSP beginners. The topic is the proper way to control a digital network's gain. Digital Network Gain Control Figure 1 shows a collection of networks I've seen, in the literature of DSP, where strict gain control is implemented.

              FIGURE 1. Examples of digital networks whose initial operations are input signal...


Reduced-Delay IIR Filters

Rick Lyons July 4, 201917 comments

This blog gives the results of a preliminary investigation of reduced-delay (reduced group delay) IIR filters based on my understanding of the concepts presented in a recent interesting blog by Steve Maslen [1].

Development of a Reduced-Delay 2nd-Order IIR Filter

Maslen's development of a reduced-delay 2nd-order IIR filter begins with a traditional prototype filter, HTrad, shown in Figure 1(a). The first modification to the prototype filter is to extract the b0 feedforward coefficient...


Free DSP Books on the Internet - Part Deux

Rick Lyons December 4, 20081 comment

Since Stephane Boucher posted my "Free DSP Books on the Internet" blog here in February 2008, I have learned of additional books on the Internet that are related to signal processing. I list those books below. Again, the listed books are copyrighted. The books' copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As such, be aware that using any of these books as promotional material is...


Looking For a Second Toolbox? This One's For Sale

Rick Lyons June 29, 2017
In case you're looking for a second toolbox, this used toolbox is for sale.

The blue-enameled steel toolbox measures 13 x 7 x 5 inches and, when opened, has a three-section tray attached to the lid. Showing signs of heavy use, the interior, tray, and exterior have collected a fair amount of dirt and grease and bear many scratches. The bottom of the box is worn from having been slid on rough surfaces. 

The toolbox currently resides in Italy. But don't worry, it can be shipped to you....