Setting the 3-dB Cutoff Frequency of an Exponential Averager

Rick Lyons October 22, 20126 comments

This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.

Figure 1 shows...


Understanding the 'Phasing Method' of Single Sideband Demodulation

Rick Lyons August 8, 201230 comments

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

  • synchronous detection,
  • phasing method,
  • Weaver method, and
  • filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...


How Discrete Signal Interpolation Improves D/A Conversion

Rick Lyons May 28, 20121 comment
This blog post is also available in pdf format. Download here.

Earlier this year, for the Linear Audio magazine, published in the Netherlands whose subscribers are technically-skilled hi-fi audio enthusiasts, I wrote an article on the fundamentals of interpolation as it's used to improve the performance of analog-to-digital conversion. Perhaps that article will be of some value to the subscribers of dsprelated.com. Here's what I wrote:

We encounter the process of digital-to-analog...


How Not to Reduce DFT Leakage

Rick Lyons May 23, 201211 comments

This blog describes a technique to reduce the effects of spectral leakage when using the discrete Fourier transform (DFT).

In late April 2012 there was a thread on the comp.dsp newsgroup discussing ways to reduce the spectral leakage problem encountered when using the DFT. One post in that thread caught my eye [1]. That post referred to a website presenting a paper describing a DFT leakage method that I'd never heard of before [2]. (Of course, not that I've heard...


The History of CIC Filters: The Untold Story

Rick Lyons February 20, 20124 comments

If you have ever studied or designed a cascaded integrator-comb (CIC) lowpass filter then surely you've read Eugene Hogenauer's seminal 1981 IEEE paper where he first introduced the CIC filter to the signal processing world [1]. As it turns out, Hogenauer's famous paper was not the first formal document describing and proposing CIC filters. Here's the story.

In the Fall of 1979 Eugene Hogenauer was finalizing his development of the CIC filter, the filter now used in so many multirate signal...


Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

Rick Lyons December 14, 201112 comments

There are two code snippets associated with this blog post:

Flat-Top Windowing Function for the Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

and

Testing the Flat-Top Windowing Function

This blog discusses an accurate method of estimating time-domain sinewave peak amplitudes based on fast Fourier transform (FFT) data. Such an operation sounds simple, but the scalloping loss characteristic of FFTs complicates the process. We eliminate that complication by...


Generating Complex Baseband and Analytic Bandpass Signals

Rick Lyons November 2, 20112 comments

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of reference table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or...


Orfanidis Textbooks are Available Online

Rick Lyons July 12, 2011

I have just learned that Sophocles J. Orfanidis, the well-known professor with the ECE Department of Rutgers University, has made two of his signal processing textbooks available for downloading on the Internet. The first textbook is: "Introduction to Signal Processing" available at: http://eceweb1.rutgers.edu/~orfanidi/intro2sp/

Happily, also available at the above web site are:

  • Errata for the textbook.
  • Homework Solutions Manual
  • Errata for Solutions...

Do Multirate Systems Have Transfer Functions?

Rick Lyons May 30, 20113 comments

The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].

Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...


Multiplying Two Binary Numbers

Rick Lyons March 16, 20117 comments

I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.

Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...


A Remarkable Bit of DFT Trivia

Rick Lyons December 26, 20133 comments

I recently noticed a rather peculiar example of discrete Fourier transform (DFT) trivia; an unexpected coincidence regarding the scalloping loss of the DFT. Here's the story.

DFT SCALLOPING LOSS As you know, if we perform an N-point DFT on N real-valued time-domain samples of a discrete sine wave, whose frequency is an integer multiple of fs/N (fs is the sample rate in Hz), the peak magnitude of the sine wave's positive-frequency spectral component will be

where A is the peak amplitude...


Implementing Impractical Digital Filters

Rick Lyons July 19, 20162 comments

This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.

Implementing an Impractical Filter: Example 1

Reference [1] presented the digital IIR bandpass filter...


60-Hz Noise and Baseline Drift Reduction in ECG Signal Processing

Rick Lyons January 23, 20216 comments

Electrocardiogram (ECG) signals are obtained by monitoring the electrical activity of the human heart for medical diagnostic purposes [1]. This blog describes a very efficient digital filter used to reduce both 60 Hz AC power line noise and unwanted signal baseline drift that often contaminate ECG signals.

PDF_HERE

We'll first describe the ECG noise reduction filter and then examine the filter's performance in a real-world ECG signal filtering example.Proposed ECG Noise Reduction Digital...


"Neat" Rectangular to Polar Conversion Algorithm

Rick Lyons November 15, 20105 comments

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:


Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling

Rick Lyons May 4, 20151 comment

Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.

The tool shows four important characteristics of periodic sampling:

  Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...

A Useful Source of Signal Processing Information

Rick Lyons March 23, 20168 comments

I just discovered a useful web-based source of signal processing information that was new to me. I thought I'd share what I learned with the subscribers here on DSPRelated.com.

The Home page of the web site that I found doesn't look at all like it would be useful to us DSP fanatics. But if you enter some signal processing topic of interest, say, "FM demodulation" (without the quotation marks) into the 'Search' box at the top of the web page

and click the red 'SEARCH...


Implementing Simultaneous Digital Differentiation, Hilbert Transformation, and Half-Band Filtering

Rick Lyons November 24, 20152 comments

Recently I've been thinking about digital differentiator and Hilbert transformer implementations and I've developed a processing scheme that may be of interest to the readers here on dsprelated.com.


A Simpler Goertzel Algorithm

Rick Lyons February 4, 2021

In this blog I propose a Goertzel algorithm that is simpler than the version of the Goertzel algorithm that is traditionally presented DSP textbooks. Below I very briefly describe the DSP textbook version of the Goertzel algorithm followed by a description of my proposed simpler algorithm.

The Traditional DSP Textbook Goertzel Algorithm

The so-called Goertzel algorithm is used to efficiently compute a single mth-bin sample of an N-point discrete Fourier transform (DFT) [1-4]. The...


Reducing IIR Filter Computational Workload

Rick Lyons May 24, 20195 comments

This blog describes a straightforward method to significantly reduce the number of necessary multiplies per input sample of traditional IIR lowpass and highpass digital filters.

Reducing IIR Filter Computations Using Dual-Path Allpass Filters

We can improve the computational speed of a lowpass or highpass IIR filter by converting that filter into a dual-path filter consisting of allpass filters as shown in Figure 1.

...

An Efficient Full-Band Sliding DFT Spectrum Analyzer

Rick Lyons April 1, 20217 comments

In this blog I present two computationally efficient full-band discrete Fourier transform (DFT) networks that compute the 0th bin and all the positive-frequency bin outputs for an N-point DFT in real-time on a sample-by-sample basis.

An Even-N Spectrum Analyzer

The full-band sliding DFT (SDFT) spectrum analyzer network, where the DFT size N is an even integer, is shown in Figure 1(a). The x[n] input sequence is restricted to be real-only valued samples. Notice that the only real parts of...