"Neat" Rectangular to Polar Conversion Algorithm
The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:
On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:
Improved Narrowband Lowpass IIR Filters
Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.
Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...
Computing FFT Twiddle Factors
Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).
Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...
Computing an FFT of Complex-Valued Data Using a Real-Only FFT Algorithm
Someone recently asked me if I knew of a way to compute a fast Fourier transform (FFT) of complex-valued input samples using an FFT algorithm that accepts only real-valued input data. Knowing of no way to do this, I rifled through my library of hardcopy FFT articles looking for help. I found nothing useful that could be applied to this problem.
After some thinking, I believe I have a solution to this problem. Here is my idea:
Let's say our original input data is the complex-valued sequence...
Some Thoughts on a German Mathematician
Carl Friedrich Gauss
Here are a few interesting facts about the great Carl Friedrich Gauss (1777-1855), considered by some historians to have been the world's greatest mathematician. The overused phrase of "genius" could, with full justification, be used to describe this man. (How many people do you know that could have discovered the law of quadratic reciprocity in number theory at the age seventeen years?) Gauss was so prolific that by some estimates he personally doubled the amount of...
Using Mason's Rule to Analyze DSP Networks
There have been times when I wanted to determine the z-domain transfer function of some discrete network, but my algebra skills failed me. Some time ago I learned Mason's Rule, which helped me solve my problems. If you're willing to learn the steps in using Mason's Rule, it has the power of George Foreman's right hand in solving network analysis problems.
This blog discusses a valuable analysis method (well known to our analog control system engineering brethren) to obtain the z-domain...
Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT
Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.
Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...
Multiplierless Exponential Averaging
This blog discusses an interesting approach to exponential averaging. To begin my story, a traditional exponential averager (also called a "leaky integrator"), shown in Figure 1(a), is commonly used to reduce noise fluctuations that contaminate relatively constant-amplitude signal measurements.
Figure 1 Exponential averaging: (a) standard network; (b) single-multiply network.That exponential averager's difference equation is
y(n) = αx(n) + (1 –...Free DSP Books on the Internet - Part Deux
Since Stephane Boucher posted my "Free DSP Books on the Internet" blog here in February 2008, I have learned of additional books on the Internet that are related to signal processing. I list those books below. Again, the listed books are copyrighted. The books' copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As such, be aware that using any of these books as promotional material is...
Computing the Group Delay of a Filter
I just learned a new method (new to me at least) for computing the group delay of digital filters. In the event this process turns out to be interesting to my readers, this blog describes the method. Let's start with a bit of algebra so that you'll know I'm not making all of this up.
Assume we have the N-sample h(n) impulse response of a digital filter, with n being our time-domain index, and that we represent the filter's discrete-time Fourier transform (DTFT), H(ω), in polar form...
Orfanidis Textbooks are Available Online
I have just learned that Sophocles J. Orfanidis, the well-known professor with the ECE Department of Rutgers University, has made two of his signal processing textbooks available for downloading on the Internet. The first textbook is: "Introduction to Signal Processing" available at: http://eceweb1.rutgers.edu/~orfanidi/intro2sp/
Happily, also available at the above web site are:
- Errata for the textbook.
- Homework Solutions Manual
- Errata for Solutions...
A Table of Digital Frequency Notation
When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)
The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...
A Useful Source of Signal Processing Information
I just discovered a useful web-based source of signal processing information that was new to me. I thought I'd share what I learned with the subscribers here on DSPRelated.com.
The Home page of the web site that I found doesn't look at all like it would be useful to us DSP fanatics. But if you enter some signal processing topic of interest, say, "FM demodulation" (without the quotation marks) into the 'Search' box at the top of the web page
and click the red 'SEARCH...
Implementing Impractical Digital Filters
This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.
Implementing an Impractical Filter: Example 1
Reference [1] presented the digital IIR bandpass filter...
Above-Average Smoothing of Impulsive Noise
In this blog I show a neat noise reduction scheme that has the high-frequency noise reduction behavior of a traditional moving average process but with much better impulsive-noise suppression.
In practice we may be required to make precise measurements in the presence of highly-impulsive noise. Without some sort of analog signal conditioning, or digital signal processing, it can be difficult to obtain stable and repeatable, measurements. This impulsive-noise smoothing trick,...
Online DSP Classes: Why Such a High Dropout Rate?
Last year the IEEE Signal Processing Magazine published a lengthy article describing three university-sponsored online digital signal processing (DSP) courses [1]. The article detailed all the effort the professors expended in creating those courses and the courses' perceived values to students.
However, one fact that struck me as important, but not thoroughly addressed in the article, was the shocking dropout rate of those online courses. For two of the courses the article's...
A Lesson In Engineering Humility
Let's assume you were given the task to design and build the 12-channel telephone transmission system shown in Figure 1.
Figure 1
At a rate of 8000 samples/second, each telephone's audio signal is sampled and converted to a 7-bit binary sequence of pulses. The analog signals at Figure 1's nodes A, B, and C are presented in Figure 2.
Figure 2
I'm convinced that some of you subscribers to this dsprelated.com web site could accomplish such a design & build task....Free DSP Books on the Internet - Part Deux
Since Stephane Boucher posted my "Free DSP Books on the Internet" blog here in February 2008, I have learned of additional books on the Internet that are related to signal processing. I list those books below. Again, the listed books are copyrighted. The books' copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As such, be aware that using any of these books as promotional material is...
Multiplying Two Binary Numbers
I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.
Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...
"Neat" Rectangular to Polar Conversion Algorithm
The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:
On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:
Somewhat Off Topic: Deciphering Transistor Terminology
I recently learned something mildly interesting about transistors, so I thought I'd share my new knowledge with you folks. Figure 1 shows a p-n-p transistor comprising a small block of n-type semiconductor sandwiched between two blocks of p-type semiconductor.
The terminology of "emitter" and "collector" seems appropriate, but did you ever wonder why the semiconductor block in the center is called the "base"? The word base seems inappropriate because the definition of the word base is:...
A Simpler Goertzel Algorithm
In this blog I propose a Goertzel algorithm that is simpler than the version of the Goertzel algorithm that is traditionally presented DSP textbooks. Below I very briefly describe the DSP textbook version of the Goertzel algorithm followed by a description of my proposed simpler algorithm.
The Traditional DSP Textbook Goertzel Algorithm
The so-called Goertzel algorithm is used to efficiently compute a single mth-bin sample of an N-point discrete Fourier transform (DFT) [1-4]. The...
A Table of Digital Frequency Notation
When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)
The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...
Controlling a DSP Network's Gain: A Note For DSP Beginners
This blog briefly discusses a topic well-known to experienced DSP practitioners but may not be so well-known to DSP beginners. The topic is the proper way to control a digital network's gain. Digital Network Gain Control Figure 1 shows a collection of networks I've seen, in the literature of DSP, where strict gain control is implemented.
FIGURE 1. Examples of digital networks whose initial operations are input signal...
The Risk In Using Frequency Domain Curves To Evaluate Digital Integrator Performance
This blog shows the danger in evaluating the performance of a digital integration network based solely on its frequency response curve. If you plan on implementing a digital integrator in your signal processing work I recommend you continue reading this blog.
Background
Typically when DSP practitioners want to predict the accuracy performance of a digital integrator they compare how closely that integrator's frequency response matches the frequency response of an ideal integrator [1,2]....
Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT
Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.
Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...
A Wide-Notch Comb Filter
This blog describes a linear-phase comb filter having wider stopband notches than a traditional comb filter.
Background
Let's first review the behavior of a traditional comb filter. Figure 1(a) shows a traditional comb filter comprising two cascaded recursive running sum (RRS) comb filters. Figure 1(b) shows the filter's co-located dual poles and dual zeros on the z-plane, while Figure 1(c) shows the filter's positive-frequency magnitude response when, for example, D = 9. The...A Complex Variable Detective Story – A Disconnect Between Theory and Implementation
Recently I was in the middle of a pencil-and-paper analysis of a digital 5-tap FIR filter having complex-valued coefficients and I encountered a surprising and thought-provoking problem. So that you can avoid the algebra difficulty I encountered, please read on.
A Surprising Algebra Puzzle
I wanted to derive the H(ω) equation for the frequency response of my FIR digital filter whose complex coefficients were h0, h1, h2, h3, and h4. I could then test the validity of my H(ω)...
Free DSP Books on the Internet - Part Deux
Since Stephane Boucher posted my "Free DSP Books on the Internet" blog here in February 2008, I have learned of additional books on the Internet that are related to signal processing. I list those books below. Again, the listed books are copyrighted. The books' copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As such, be aware that using any of these books as promotional material is...
Looking For a Second Toolbox? This One's For Sale
In case you're looking for a second toolbox, this used toolbox is for sale.The blue-enameled steel toolbox measures 13 x 7 x 5 inches and, when opened, has a three-section tray attached to the lid. Showing signs of heavy use, the interior, tray, and exterior have collected a fair amount of dirt and grease and bear many scratches. The bottom of the box is worn from having been slid on rough surfaces.
The toolbox currently resides in Italy. But don't worry, it can be shipped to you....