## Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

There are two code snippets associated with this blog post:

and

Testing the Flat-Top Windowing Function

This blog discusses an accurate method of estimating time-domain sinewave peak amplitudes based on fast Fourier transform (FFT) data. Such an operation sounds simple, but the scalloping loss characteristic of FFTs complicates the process. We eliminate that complication by...

## Generating Complex Baseband and Analytic Bandpass Signals

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of reference table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or...

## Orfanidis Textbooks are Available Online

I have just learned that Sophocles J. Orfanidis, the well-known professor with the ECE Department of Rutgers University, has made two of his signal processing textbooks available for downloading on the Internet. The first textbook is: "Introduction to Signal Processing" available at: http://eceweb1.rutgers.edu/~orfanidi/intro2sp/

Happily, also available at the above web site are:

- Errata for the textbook.
- Homework Solutions Manual
- Errata for Solutions...

## Do Multirate Systems Have Transfer Functions?

The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].

Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...

## Multiplying Two Binary Numbers

I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.

Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...

## "Neat" Rectangular to Polar Conversion Algorithm

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:

## Improved Narrowband Lowpass IIR Filters

Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of dsprelated.com.

Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...

## Computing FFT Twiddle Factors

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...

## Computing an FFT of Complex-Valued Data Using a Real-Only FFT Algorithm

Someone recently asked me if I knew of a way to compute a fast Fourier transform (FFT) of complex-valued input samples using an FFT algorithm that accepts only real-valued input data. Knowing of no way to do this, I rifled through my library of hardcopy FFT articles looking for help. I found nothing useful that could be applied to this problem.

After some thinking, I believe I have a solution to this problem. Here is my idea:

Let's say our original input data is the complex-valued sequence...

## Some Thoughts on a German Mathematician

Carl Friedrich Gauss

Here are a few interesting facts about the great Carl Friedrich Gauss (1777-1855), considered by some historians to have been the world's greatest mathematician. The overused phrase of "genius" could, with full justification, be used to describe this man. (How many people do you know that could have discovered the law of quadratic reciprocity in number theory at the age seventeen years?) Gauss was so prolific that by some estimates he personally doubled the amount of...

## Above-Average Smoothing of Impulsive Noise

In this blog I show a neat noise reduction scheme that has the high-frequency noise reduction behavior of a traditional moving average process but with much better impulsive-noise suppression.

In practice we may be required to make precise measurements in the presence of highly-impulsive noise. Without some sort of analog signal conditioning, or digital signal processing, it can be difficult to obtain stable and repeatable, measurements. This impulsive-noise smoothing trick,...

## A Table of Digital Frequency Notation

When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)

The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...

## Computing Chebyshev Window Sequences

Chebyshev windows (also called Dolph-Chebyshev, or Tchebyschev windows), have several useful properties. Those windows, unlike the fixed Hanning, Hamming, or Blackman window functions, have adjustable sidelobe levels. For a given user-defined sidelobe level and window sequence length, Chebyshev windows yield the most narrow mainlobe compared to any fixed window functions.

However, for some reason, detailed descriptions of how to compute Chebyshev window sequences are not readily available...

## Implementing Simultaneous Digital Differentiation, Hilbert Transformation, and Half-Band Filtering

Recently I've been thinking about digital differentiator and Hilbert transformer implementations and I've developed a processing scheme that may be of interest to the readers here on dsprelated.com.

This blog presents a novel method for simultaneously implementing a digital differentiator (DD), a Hilbert transformer (HT), and a half-band lowpass filter (HBF) using a single tapped-delay line and a single set of coefficients. The method is based on the similarities of the three N =...

## "Neat" Rectangular to Polar Conversion Algorithm

The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:

On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:

## Orfanidis Textbooks are Available Online

I have just learned that Sophocles J. Orfanidis, the well-known professor with the ECE Department of Rutgers University, has made two of his signal processing textbooks available for downloading on the Internet. The first textbook is: "Introduction to Signal Processing" available at: http://eceweb1.rutgers.edu/~orfanidi/intro2sp/

Happily, also available at the above web site are:

- Errata for the textbook.
- Homework Solutions Manual
- Errata for Solutions...

## Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling

Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.

The tool shows four important characteristics of periodic sampling:

Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...## Microprocessor Family Tree

Below is a little microprocessor history. Perhaps some of the ol' timers here will recognize a few of these integrated circuits. I have a special place in my heart for the Intel 8080 chip.

Image copied, without permission, from the now defunct Creative Computing magazine, Vol. 11, No. 6, June 1985.

## A Lesson In Engineering Humility

Let's assume you were given the task to design and build the 12-channel telephone transmission system shown in Figure 1.

Figure 1

At a rate of 8000 samples/second, each telephone's audio signal is sampled and converted to a 7-bit binary sequence of pulses. The analog signals at Figure 1's nodes A, B, and C are presented in Figure 2.

Figure 2

I'm convinced that some of you subscribers to this dsprelated.com web site could accomplish such a design & build task....## Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT

Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.

Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...

## Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling

Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.

The tool shows four important characteristics of periodic sampling:

Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...## Complex Down-Conversion Amplitude Loss

This blog illustrates the signal amplitude loss inherent in a traditional complex down-conversion system. (In the literature of signal processing, complex down-conversion is also called "quadrature demodulation.")

The general idea behind complex down-conversion is shown in Figure 1(a). And the traditional hardware block diagram of a complex down-converter is shown in Figure 1(b).

Let's assume the input to our down-conversion system is an analog radio frequency (RF) signal,...

## Reduced-Delay IIR Filters

This blog gives the results of a preliminary investigation of reduced-delay (reduced group delay) IIR filters based on my understanding of the concepts presented in a recent interesting blog by Steve Maslen [1].

Development of a Reduced-Delay 2nd-Order IIR Filter

Maslen's development of a reduced-delay 2nd-order IIR filter begins with a traditional prototype filter, HTrad, shown in Figure 1(a). The first modification to the prototype filter is to extract the b0 feedforward coefficient...

## A Brief Introduction To Romberg Integration

This blog briefly describes a remarkable integration algorithm, called "Romberg integration." The algorithm is used in the field of numerical analysis but it's not so well-known in the world of DSP.

To show the power of Romberg integration, and to convince you to continue reading, consider the notion of estimating the area under the continuous x(t) = sin(t) curve based on the five x(n) samples represented by the dots in Figure 1.The results of performing a Trapezoidal Rule, a...

## A Table of Digital Frequency Notation

When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)

The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...

## A Complex Variable Detective Story – A Disconnect Between Theory and Implementation

Recently I was in the middle of a pencil-and-paper analysis of a digital 5-tap FIR filter having complex-valued coefficients and I encountered a surprising and thought-provoking problem. So that you can avoid the algebra difficulty I encountered, please read on.

A Surprising Algebra Puzzle

I wanted to derive the H(ω) equation for the frequency response of my FIR digital filter whose complex coefficients were h0, h1, h2, h3, and h4. I could then test the validity of my H(ω)...

## Reducing IIR Filter Computational Workload

This blog describes a straightforward method to significantly reduce the number of necessary multiplies per input sample of traditional IIR lowpass and highpass digital filters.

Reducing IIR Filter Computations Using Dual-Path Allpass Filters

We can improve the computational speed of a lowpass or highpass IIR filter by converting that filter into a dual-path filter consisting of allpass filters as shown in Figure 1.

...## Controlling a DSP Network's Gain: A Note For DSP Beginners

This blog briefly discusses a topic well-known to experienced DSP practitioners but may not be so well-known to DSP beginners. The topic is the proper way to control a digital network's gain. Digital Network Gain Control Figure 1 shows a collection of networks I've seen, in the literature of DSP, where strict gain control is implemented.

FIGURE 1. Examples of digital networks whose initial operations are input signal...

## Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT

Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.

Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...

## Somewhat Off Topic: Deciphering Transistor Terminology

I recently learned something mildly interesting about transistors, so I thought I'd share my new knowledge with you folks. Figure 1 shows a p-n-p transistor comprising a small block of n-type semiconductor sandwiched between two blocks of p-type semiconductor.

The terminology of "emitter" and "collector" seems appropriate, but did you ever wonder why the semiconductor block in the center is called the "base"? The word base seems inappropriate because the definition of the word base is:...