## A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters

This article discusses the behavior, mathematics, and implementation of cascaded integrator-comb filters.

## The correct answer to the quiz of @apolin

The correct answer to the @apolin quiz can be easily explained using the following Simulink model: In MATLAB you have to initialize the two filters: h = dftmtx (8); h1 = h (3, :); % The filter of the quiz h2 = h (7, :); % The...

## A Free DSP Laboratory

Getting Started In Audio DSPImagine you're starting out studying DSP and your particular interest is audio. Wouldn't it be nice to have access to some audio signals and the tools to analyze and modify them? In the old days, a laboratory like this...

## Polynomial calculations on an FIR filter engine, part 1

Polynomial evaluation is structurally akin to FIR filtering and fits dedicated filtering engines quite well, with certain caveats. Itâ€™s a technique that has wide applicability. This two-part note discusses transducer and amplifier non-linearity...

## Plotting Discrete-Time Signals

A discrete-time sinusoid can have frequency up to just shy of half the sample frequency. But if you try to plot the sinusoid, the result is not always recognizable. For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine. But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots. We typically want the plot of a sampled sinusoid to resemble its continuous-time version. To achieve this, we need to interpolate.

## Interpolation Basics

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal. Figure 1 illustrates what we mean by interpolation. The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts. The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1]. For example, if we increase the sample rate by the integer factor of four, the interpolated signal is as shown in the bottom plot. The time between samples has been decreased from Ts to Ts/4.

## Stereophonic Amplitude-Panning: A Derivation of the "Tangent Law"

This article presents a derivation of the "Tangent Law"

## A Brief Introduction To Romberg Integration

This article briefly describes a remarkable integration algorithm, called "Romberg integration." The algorithm is used in the field of numerical analysis but it's not so well-known in the world of DSP.

## An IIR 'DC Removal' Filter

●2 commentsIt seems to me that DC removal filters (also called "DC blocking filters") have been of some moderate interest recently on the dsprelated.com Forum web page. With that notion in mind I thought I'd post a little information, from Chapter 13 of my "Understanding DSP" book, regarding infinite impulse response (IIR) DC removal filters.

## Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one. This time we...

## Discrete Wavelet Transform Filter Bank Implementation (part 1)

●1 commentUPDATE: Added graphs and code to explain the frequency division of the branches The focus of this article is to briefly explain an implementation of this transform and several filter bank forms. Theoretical information about DWT can be found...

## Python scipy.signal IIR Filter Design

●2 commentsIntroduction The following is an introduction on how to design an infinite impulse response (IIR) filters using the Python scipy.signal package. This post, mainly, covers how to use the scipy.signal package and is not a thorough...

## How to Find a Fast Floating-Point atan2 Approximation

Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated...

## Third-Order Distortion of a Digitally-Modulated Signal

Analog designers are always harping about amplifier third-order distortion. Why? In this article, we'll look at why third-order distortion is important, and simulate a QAM signal with third order distortion.

## The Power Spectrum

●2 commentsOften, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don't care about the absolute accuracy of the y axis. However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal's power in the frequency domain. This post shows how to calculate an accurate power spectrum.

## Linear-phase DC Removal Filter

●1 commentThis blog describes several DC removal networks that might be of interest to the dsprelated.com readers. Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a...

## The Exponential Nature of the Complex Unit Circle

Introduction This is an article to hopefully give an understanding to Euler's magnificent equation: $$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$ This equation is usually proved using the Taylor series expansion for the given...

## A Brief Introduction To Romberg Integration

This article briefly describes a remarkable integration algorithm, called "Romberg integration." The algorithm is used in the field of numerical analysis but it's not so well-known in the world of DSP.

## Generating pink noise

●3 commentsIn one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music. The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple...

## IIR Bandpass Filters Using Cascaded Biquads

In an earlier post [1], we implemented lowpass IIR filters using a cascade of second-order IIR filters, or biquads. This post provides a Matlab function to do the same for Butterworth bandpass IIR filters. Compared to conventional implementations, bandpass filters based on biquads are less sensitive to coefficient quantization [2]. This becomes important when designing narrowband filters.