DSPRelated.com
Tutorials

The Discrete Fourier Transform as a Frequency Response

Neil Robertson February 4, 20236 comments

The discrete frequency response H(k) of a Finite Impulse Response (FIR) filter is the Discrete Fourier Transform (DFT) of its impulse response h(n) [1].  So, if we can find H(k) by whatever method, it should be identical to the DFT of h(n).  In this article, we’ll find H(k) by using complex exponentials, and we’ll see that it is indeed identical to the DFT of h(n).

Consider the four-tap FIR filter in Figure 1, where each block labeled Ts represents a delay of one...


Add the Hilbert Transformer to Your DSP Toolkit, Part 2

Neil Robertson December 4, 20223 comments

In this part, I’ll show how to design a Hilbert Transformer using the coefficients of a half-band filter as a starting point, which turns out to be remarkably simple.  I’ll also show how a half-band filter can be synthesized using the Matlab function firpm, which employs the Parks-McClellan algorithm.

A half-band filter is a type of lowpass, even-symmetric FIR filter having an odd number of taps, with the even-numbered taps (except for the main tap) equal to zero.  This...


Add the Hilbert Transformer to Your DSP Toolkit, Part 1

Neil Robertson November 22, 20224 comments

In some previous articles, I made use of the Hilbert transformer, but did not explain its theory in any detail.  In this article, I’ll dig a little deeper into how the Hilbert Transformer works.  Understanding the Hilbert Transformer involves a modest amount of mathematics, but the payoff in useful applications is worth it.

As we’ll learn, a Hilbert Transformer is just a particular type of Finite Impulse Response (FIR) filter.  In Part 1 of this article, I’ll...


Candan's Tweaks of Jacobsen's Frequency Approximation

Cedron Dawg November 11, 2022
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by explaining how a tweak to a well known frequency approximation formula makes it better, and another tweak makes it exact. The first tweak is shown to be the first of a pattern and a novel approximation formula is made from the second. It only requires a few extra calculations beyond the original approximation to come up with an approximation suitable for most...


A Recipe for a Basic Trigonometry Table

Cedron Dawg October 4, 2022
Introduction

This is an article that is give a better understanding to the Discrete Fourier Transform (DFT) by showing how to build a Sine and Cosine table from scratch. Along the way a recursive method is developed as a tone generator for a pure tone complex signal with an amplitude of one. Then a simpler multiplicative one. Each with drift correction factors. By setting the initial values to zero and one degrees and letting it run to build 45 values, the entire set of values needed...


Learn About Transmission Lines Using a Discrete-Time Model

Neil Robertson January 12, 2022

We don’t often think about signal transmission lines, but we use them every day.  Familiar examples are coaxial cable, Ethernet cable, and Universal Serial Bus (USB).  Like it or not, high-speed clock and signal traces on printed-circuit boards are also transmission lines.

While modeling transmission lines is in general a complex undertaking, it is surprisingly simple to model a lossless, uniform line with resistive terminations by using a discrete-time approach.  A...


The Discrete Fourier Transform and the Need for Window Functions

Neil Robertson November 15, 20212 comments

The Discrete Fourier Transform (DFT) is used to find the frequency spectrum of a discrete-time signal.  A computationally efficient version called the Fast Fourier Transform (FFT) is normally used to calculate the DFT.  But, as many have found to their dismay, the FFT, when used alone, usually does not provide an accurate spectrum.  The reason is a phenomenon called spectral leakage.

Spectral leakage can be reduced drastically by using a window function in conjunction...


Modeling Anti-Alias Filters

Neil Robertson September 26, 2021

Digitizing a signal using an Analog to Digital Converter (ADC) usually requires an anti-alias filter, as shown in Figure 1a.  In this post, we’ll develop models of lowpass Butterworth and Chebyshev anti-alias filters, and compute the time domain and frequency domain output of the ADC for an example input signal.  We’ll also model aliasing of Gaussian noise.  I hope the examples make the textbook explanations of aliasing seem a little more real.  Of course, modeling of...


In Search of The Fourth Wave

Allen Downey September 25, 20214 comments

Last year I participated in the first DSP Related online conference, where I presented a short talk called "In Search of The Fourth Wave". It's based on a small mystery I encountered when I was working on Think DSP.  As you might know:

 A sawtooth wave contains harmonics at integer multiples of the fundamental frequency, and their amplitudes drop off in proportion to 1/f.  A square wave contains only odd multiples of the fundamental, but they also drop off...

Setting Carrier to Noise Ratio in Simulations

Neil Robertson April 11, 2021

When simulating digital receivers, we often want to check performance with added Gaussian noise.  In this article, I’ll derive the simple equations for the rms noise level needed to produce a desired carrier to noise ratio (CNR or C/N).  I also provide a short Matlab function to generate a noise vector of the desired level for a given signal vector.

Definition of C/N

The Carrier to noise ratio is defined as the ratio of average signal power to noise power for a modulated...


Digital PLL's -- Part 1

Neil Robertson June 7, 201626 comments
1. Introduction

Figure 1.1 is a block diagram of a digital PLL (DPLL).  The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal.  The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance.  The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...


Simplest Calculation of Half-band Filter Coefficients

Neil Robertson November 20, 20179 comments

Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4  [1]*.  And it so happens that almost half of the coefficients are zero.  The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2.  Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.

Here we will compute half-band...


Interpolation Basics

Neil Robertson August 20, 201912 comments

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal.  Figure 1 illustrates what we mean by interpolation.  The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts.  The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1].  For example, if...


Plotting Discrete-Time Signals

Neil Robertson September 15, 20195 comments

A discrete-time sinusoid can have frequency up to just shy of half the sample frequency.  But if you try to plot the sinusoid, the result is not always recognizable.  For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine.  But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots.  We typically want the plot of a...


An s-Plane to z-Plane Mapping Example

Rick Lyons September 24, 201610 comments

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.

...

Phase or Frequency Shifter Using a Hilbert Transformer

Neil Robertson March 25, 201821 comments

In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter.  In either case, the input is a real signal and the output is a real signal.  We’ll use some simple Matlab code to simulate these systems.  After that, we’ll go into a little more detail on Hilbert transformer theory and design. 

Phase Shifter

A conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...


Second Order Discrete-Time System Demonstration

Neil Robertson April 1, 20202 comments

Discrete-time systems are remarkable:  the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z).  Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system.  With a discrete-time model, we can then easily compute the time response to any input.  But note that the goal here is as much to...


Evaluate Window Functions for the Discrete Fourier Transform

Neil Robertson December 18, 20184 comments

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum.  For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT.  Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3].  There are many different window functions and each produces a different approximation of the spectrum.  In this post, we’ll present Matlab code that...


The Power Spectrum

Neil Robertson October 8, 2016

Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis.  However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain.  This post shows how to calculate an accurate power spectrum.

Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...


The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201517 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct