## Design a DAC sinx/x Corrector

July 22, 20188 comments

This post provides a Matlab function that designs linear-phase FIR sinx/x correctors.  It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.

A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process.  In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses.  These are converted by the DAC into contiguous pulses...

## Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

May 27, 201831 comments

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA.  This situation is shown in Figure 1.  Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2.  This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1].  In that PLL, we...

## ADC Clock Jitter Model, Part 2 – Random Jitter

April 22, 20189 comments

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter.  Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered Gaussian sequence as the jitter source.  What we are calling jitter can also be called time jitter, phase jitter, or phase noise.  It’s all the same phenomenon.  Typically, we call it jitter when we have a time-domain representation,...

## ADC Clock Jitter Model, Part 1 – Deterministic Jitter

April 16, 201819 comments

Analog to digital converters (ADC’s) have several imperfections that affect communications signals, including thermal noise, differential nonlinearity, and sample clock jitter [1, 2].  As shown in Figure 1, the ADC has a sample/hold function that is clocked by a sample clock.  Jitter on the sample clock causes the sampling instants to vary from the ideal sample time.  This transfers the jitter from the sample clock to the input signal.

In this article, I present a Matlab...

## How precise is my measurement?

March 28, 20183 comments

Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.

An accurate, precise...

## Phase or Frequency Shifter Using a Hilbert Transformer

March 25, 201821 comments

In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter.  In either case, the input is a real signal and the output is a real signal.  We’ll use some simple Matlab code to simulate these systems.  After that, we’ll go into a little more detail on Hilbert transformer theory and design.

Phase Shifter

A conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...

## Phase and Amplitude Calculation for a Pure Complex Tone in a DFT using Multiple Bins

March 14, 201812 comments
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from several DFT bin values and knowing the frequency. This article is functionally an extension of my prior article "Phase and Amplitude Calculation for a Pure Complex Tone in a DFT"[1] which used only one bin for a complex tone, but it is actually much more similar to my approach for real...

## Coefficients of Cascaded Discrete-Time Systems

March 4, 2018

In this article, we’ll show how to compute the coefficients that result when you cascade discrete-time systems.  With the coefficients in hand, it’s then easy to compute the time or frequency response.  The computation presented here can also be used to find coefficients of mixed discrete-time and continuous-time systems, by using a discrete time model of the continuous-time portion [1].

## Design IIR Filters Using Cascaded Biquads

February 11, 201828 comments

This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads.  We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix.  Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc).  As we’ll see, the cascaded-biquad design is less sensitive to coefficient...

## Design IIR Highpass Filters

February 3, 20182 comments

This post is the fourth in a series of tutorials on IIR Butterworth filter design.  So far we covered lowpass [1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters.  The general approach, as before, has six steps:

Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the analog highpass filter (pre-warping). Transform the...

## Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

May 27, 201831 comments

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA.  This situation is shown in Figure 1.  Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2.  This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1].  In that PLL, we...

## Canonic Signed Digit (CSD) Representation of Integers

February 18, 2017

In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients.  I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values.  Here I want to use that function to illustrate a few properties of CSD numbers.

In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}.  Thus, for example, the binary value 1 1...

## Angle Addition Formulas from Euler's Formula

March 16, 20199 comments
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT), but only indirectly. The main intent is to get someone who is uncomfortable with complex numbers a little more used to them and relate them back to already known Trigonometric relationships done in Real values. It is essentially a followup to my first blog article "The Exponential Nature of the Complex Unit Circle".

Polar Coordinates

The more common way of...

## Compute the Frequency Response of a Multistage Decimator

February 10, 20192 comments

Figure 1a shows the block diagram of a decimation-by-8 filter, consisting of a low-pass finite impulse response (FIR) filter followed by downsampling by 8 [1].  A more efficient version is shown in Figure 1b, which uses three cascaded decimate-by-two filters.  This implementation has the advantages that only FIR 1 is sampled at the highest sample rate, and the total number of filter taps is lower.

The frequency response of the single-stage decimator before downsampling is just...

## Compute Modulation Error Ratio (MER) for QAM

November 5, 20192 comments

This post defines the Modulation Error Ratio (MER) for QAM signals, and shows how to compute it.  As we’ll see, in the absence of impairments other than noise, the MER tracks the signal’s Carrier-to-Noise Ratio (over a limited range).  A Matlab script at the end of the PDF version of this post computes MER for a simplified QAM-64 system.

Figure 1 is a simplified block diagram of a QAM system.  The transmitter includes a source of QAM symbols, a root-Nyquist...

## Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT

March 9, 201920 comments

One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate.  The derivation of can be found in textbooks [1,2].  You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).

The DFT of the sampled signal x(n) is defined as:

$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$

Where

X(k) = discrete frequency spectrum of time sequence x(n)

## Wavelets I - From Filter Banks to the Dilation Equation

September 28, 20169 comments

This is the first in what I hope will be a series of posts about wavelets, particularly about the Fast Wavelet Transform (FWT). The FWT is extremely useful in practice and also very interesting from a theoretical point of view. Of course there are already plenty of resources, but I found them tending to be either simple implementation guides that do not touch on the many interesting and sometimes crucial connections. Or they are highly mathematical and definition-heavy, for a...

## Design IIR Band-Reject Filters

January 17, 20182 comments

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis.  Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters.  Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies.   I’ll discuss the differences between the two approaches later in this...

## DFT Graphical Interpretation: Centroids of Weighted Roots of Unity

April 10, 20151 comment
Introduction

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...

## A Recipe for a Common Logarithm Table

April 29, 2017
Introduction

This is an article that is a digression from trying to give a better understanding to the Discrete Fourier Transform (DFT).

A method for building a table of Base 10 Logarithms, also known as Common Logarithms, is featured using math that can be done with paper and pencil. The reader is assumed to have some familiarity with logarithm functions. This material has no dependency on the material in my previous blog articles.

If you were ever curious about how...