## Simplest Calculation of Half-band Filter Coefficients

Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4 [1]*. And it so happens that almost half of the coefficients are zero. The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2. Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.

Here we will compute half-band...

## Improved Three Bin Exact Frequency Formula for a Pure Real Tone in a DFT

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by extending the exact two bin formulas for the frequency of a real tone in a DFT to the three bin case. This article is a direct extension of my prior article "Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT"[1]. The formulas derived in the previous article are also presented in this article in the computational order, rather than the indirect order they were...

## There and Back Again: Time of Flight Ranging between Two Wireless Nodes

With the growth in the Internet of Things (IoT) products, the number of applications requiring an estimate of range between two wireless nodes in indoor channels is growing very quickly as well. Therefore, localization is becoming a red hot market today and will remain so in the coming years.

One question that is perplexing is that many companies now a days are offering cm level accurate solutions using RF signals. The conventional wireless nodes usually implement synchronization...

## Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the frequency of a real tone in a DFT. This time it is a two bin version. The approach taken is a vector based one similar to the approach used in "Three Bin Exact Frequency Formulas for a Pure Complex Tone in a DFT"[1]. The real valued formula presented in this article actually preceded, and was the basis for the complex three bin...

## Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

IntroductionThis is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.

In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...

## Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

IntroductionThis is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.

A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...

## Modeling a Continuous-Time System with Matlab

Many of us are familiar with modeling a continuous-time system in the frequency domain using its transfer function H(s) or H(jω). However, finding the time response can be challenging, and traditionally involves finding the inverse Laplace transform of H(s). An alternative way to get both time and frequency responses is to transform H(s) to a discrete-time system H(z) using the impulse-invariant transform [1,2]. This method provides an exact match to the continuous-time...

## How to Find a Fast Floating-Point atan2 Approximation

Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:$$ atan(z) \approx \dfrac{z}{1.0 +...

## Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

IntroductionThis is an article that is a another digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). Although it is not as far off as the last blog article.

A new family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. They are a generalization of Equation (1) from Rick Lyons' recent blog article titled "Sinusoidal Frequency Estimation Based on Time-Domain Samples"[1]. ...

## A Recipe for a Common Logarithm Table

IntroductionThis is an article that is a digression from trying to give a better understanding to the Discrete Fourier Transform (DFT).

A method for building a table of Base 10 Logarithms, also known as Common Logarithms, is featured using math that can be done with paper and pencil. The reader is assumed to have some familiarity with logarithm functions. This material has no dependency on the material in my previous blog articles.

If you were ever curious about how...

## A Recipe for a Common Logarithm Table

IntroductionThis is an article that is a digression from trying to give a better understanding to the Discrete Fourier Transform (DFT).

A method for building a table of Base 10 Logarithms, also known as Common Logarithms, is featured using math that can be done with paper and pencil. The reader is assumed to have some familiarity with logarithm functions. This material has no dependency on the material in my previous blog articles.

If you were ever curious about how...

## Design IIR Band-Reject Filters

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters. Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies. I’ll discuss the differences between the two approaches later in this...

## Angle Addition Formulas from Euler's Formula

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT), but only indirectly. The main intent is to get someone who is uncomfortable with complex numbers a little more used to them and relate them back to already known Trigonometric relationships done in Real values. It is essentially a followup to my first blog article "The Exponential Nature of the Complex Unit Circle".

Polar CoordinatesThe more common way of...

## Multimedia Processing with FFMPEG

FFMPEG is a set of libraries and a command line tool for encoding and decoding audio and video in many different formats. It is a free software project for manipulating/processing multimedia data. Many open source media players are based on FFMPEG libraries.

FFMPEG is developed under Linux but it can be compiled under most operating systems including Mac OS, Microsoft Windows. For more details about FFMPEG please refer

## Discrete-Time PLLs, Part 1: Basics

Design Files: Part1.slx

Hi everyone,

In this series of tutorials on discrete-time PLLs we will be focusing on Phase-Locked Loops that can be implemented in discrete-time signal proessors such as FPGAs, DSPs and of course, MATLAB.

In the first part of the series, we will be reviewing the basics of continuous-time baseband PLLs and we will see some useful mathematics that will give us insight into the inners working of PLLs. In the second part, we will focus on...

## Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT

One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate. The derivation of can be found in textbooks [1,2]. You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).

The DFT of the sampled signal x(n) is defined as:

$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$

Where

X(k) = discrete frequency spectrum of time sequence x(n)

## Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA. This situation is shown in Figure 1. Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2. This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1]. In that PLL, we...

## ADC Clock Jitter Model, Part 2 – Random Jitter

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter. Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered Gaussian sequence as the jitter source. What we are calling jitter can also be called time jitter, phase jitter, or phase noise. It’s all the same phenomenon. Typically, we call it jitter when we have a time-domain representation,...

## Model Signal Impairments at Complex Baseband

In this article, we develop complex-baseband models for several signal impairments: interfering carrier, multipath, phase noise, and Gaussian noise. To provide concrete examples, we’ll apply the impairments to a QAM system. The impairment models are Matlab functions that each use at most seven lines of code. Although our example system is QAM, the models can be used for any complex-baseband signal.

I used a very simple complex-baseband model of a QAM system in my last

## Canonic Signed Digit (CSD) Representation of Integers

In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients. I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values. Here I want to use that function to illustrate a few properties of CSD numbers.

In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}. Thus, for example, the binary value 1 1...

## Design IIR Band-Reject Filters

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters. Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies. I’ll discuss the differences between the two approaches later in this...

## Canonic Signed Digit (CSD) Representation of Integers

In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients. I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values. Here I want to use that function to illustrate a few properties of CSD numbers.

In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}. Thus, for example, the binary value 1 1...

## How precise is my measurement?

Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.

An accurate, precise...## Computing Translated Frequencies in Digitizing and Downsampling Analog Bandpass Signals

In digital signal processing (DSP) we're all familiar with the processes of bandpass sampling an analog bandpass signal and downsampling a digital bandpass signal. The overall spectral behavior of those operations are well-documented. However, mathematical expressions for computing the translated frequency of individual spectral components, after bandpass sampling or downsampling, are not available in the standard DSP textbooks. The following three sections explain how to compute the...

## A Recipe for a Common Logarithm Table

IntroductionThis is an article that is a digression from trying to give a better understanding to the Discrete Fourier Transform (DFT).

A method for building a table of Base 10 Logarithms, also known as Common Logarithms, is featured using math that can be done with paper and pencil. The reader is assumed to have some familiarity with logarithm functions. This material has no dependency on the material in my previous blog articles.

If you were ever curious about how...

## Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA. This situation is shown in Figure 1. Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2. This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1]. In that PLL, we...

## Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT

One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate. The derivation of can be found in textbooks [1,2]. You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).

The DFT of the sampled signal x(n) is defined as:

$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$

Where

X(k) = discrete frequency spectrum of time sequence x(n)

## DFT Graphical Interpretation: Centroids of Weighted Roots of Unity

IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...

## ADC Clock Jitter Model, Part 2 – Random Jitter

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter. Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered Gaussian sequence as the jitter source. What we are calling jitter can also be called time jitter, phase jitter, or phase noise. It’s all the same phenomenon. Typically, we call it jitter when we have a time-domain representation,...

## Exact Frequency Formula for a Pure Real Tone in a DFT

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a major theoretical advance in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is...