## Should DSP Undergraduate Students Study z-Transform Regions of Convergence?

Not long ago I presented my 3-day DSP class to a group of engineers at Tektronix Inc. in Beaverton Oregon [1]. After I finished covering my material on IIR filters' z-plane pole locations and filter stability, one of the Tektronix engineers asked a question similar to:

"I noticed that you didn't discuss z-plane regions of convergence here. In my undergraduate DSP class we spent a lot of classroom and homework time on the ...

## Implementing Impractical Digital Filters

This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.

Implementing an Impractical Filter: Example 1

Reference [1] presented the digital IIR bandpass filter...

## Filter a Rectangular Pulse with no Ringing

To filter a rectangular pulse without any ringing, there is only one requirement on the filter coefficients: they must all be positive. However, if we want the leading and trailing edge of the pulse to be symmetrical, then the coefficients must be symmetrical. What we are describing is basically a window function.

Consider a rectangular pulse 32 samples long with fs = 1 kHz. Here is the Matlab code to generate the pulse:

N= 64; fs= 1000; % Hz sample...## Dealing With Fixed Point Fractions

Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...

## The DFT Output and Its Dimensions

The Discrete Fourier Transform, or DFT, converts a signal from discrete time to discrete frequency. It is commonly implemented as and used as the Fast Fourier Transform (FFT). This article will attempt to clarify the format of the DFT output and how it is produced.

Living in the real world, we deal with real signals. The data we typically sample does not have an imaginary component. For example, the voltage sampled by a receiver is a real value at a particular point in time. Let’s...

## Amplitude modulation and the sampling theorem

I am working on the 11th and probably final chapter of Think DSP, which follows material my colleague Siddhartan Govindasamy developed for a class at Olin College. He introduces amplitude modulation as a clever way to sneak up on the Nyquist–Shannon sampling theorem.

Most of the code for the chapter is done: you can check it out in this IPython notebook. I haven't written the text yet, but I'll outline it here, and paste in the key figures.

Convolution...

## Exponential Smoothing with a Wrinkle

IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by providing a set of preprocessing filters to improve the resolution of the DFT. Because of the exponential nature of sinusoidal functions, they have special mathematical properties when exponential smoothing is applied to them. These properties are derived and explained in this blog article.

Basic Exponential Smoothing

Exponential smoothing is also known as...

## Discrete-Time PLLs, Part 1: Basics

In this series of tutorials on discrete-time PLLs we will be focusing on Phase-Locked Loops that can be implemented in discrete-time signal proessors such as FPGAs, DSPs and of course, MATLAB.

## Compressive Sensing - Recovery of Sparse Signals (Part 1)

The amount of data that is generated has been increasing at a substantial rate since the beginning of the digital revolution. The constraints on the sampling and reconstruction of digital signals are derived from the well-known Nyquist-Shannon sampling theorem...

## Analytic Signal

In communication theory and modulation theory we always deal with two phases: In-phase (I) and Quadrature-phase (Q). The question that I will discuss in this blog is that why we use two phases and not more.

## Discrete Wavelet Transform Filter Bank Implementation (part 1)

UPDATE: Added graphs and code to explain the frequency division of the branches

The focus of this article is to briefly explain an implementation of this transform and several filter bank forms. Theoretical information about DWT can be found elsewhere.

First of all, a 'quick and dirty' simplified explanation of the differences between DFT and DWT:

The DWT (Discrete Wavelet Transform), simply put, is an operation that receives a signal as an input (a vector of data) and...

## Feedback Controllers - Making Hardware with Firmware. Part 7. Turbo-charged DSP Oscillators

This article will look at some DSP Sine-wave oscillators and will show how an FPGA with limited floating-point performance due to latency, can be persuaded to produce much higher sample-rate sine-waves of high quality.Comparisons will be made between implementations on Intel Cyclone V and Cyclone 10 GX FPGAs. An Intel numerically controlled oscillator

## FIR sideways (interpolator polyphase decomposition)

An efficient implementation of a symmetric-FIR polyphase 1:3 interpolator that doesn't follow the usual tapped delay line-paradigm. The example exploits the impulse response symmetry and avoids four multiplications out of 10. keywords: symmetric polyphase FIR filter implementation ASIC Matlab / Octave implementation

IntroductionAn interpolating FIR filter can be implemented with a single tapped delay line, possibly going forwards and backwards for a symmetric impulse response. To...

## Hidden Linear Algebra in DSP

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...

## Amplitude modulation and the sampling theorem

I am working on the 11th and probably final chapter of Think DSP, which follows material my colleague Siddhartan Govindasamy developed for a class at Olin College. He introduces amplitude modulation as a clever way to sneak up on the Nyquist–Shannon sampling theorem.

Most of the code for the chapter is done: you can check it out in this IPython notebook. I haven't written the text yet, but I'll outline it here, and paste in the key figures.

Convolution...

## The DFT Output and Its Dimensions

The Discrete Fourier Transform, or DFT, converts a signal from discrete time to discrete frequency. It is commonly implemented as and used as the Fast Fourier Transform (FFT). This article will attempt to clarify the format of the DFT output and how it is produced.

Living in the real world, we deal with real signals. The data we typically sample does not have an imaginary component. For example, the voltage sampled by a receiver is a real value at a particular point in time. Let’s...

## Design study: 1:64 interpolating pulse shaping FIR

This article is the documentation to a code snippet that originated from a discussion on comp.dsp.

The task is to design a root-raised cosine filter with a rolloff of a=0.15 that interpolates to 64x the symbol rate at the input.

The code snippet shows a solution that is relatively straightforward to design and achieves reasonably good efficiency using only FIR filters.

Motivation: “simple solutions?”## Feedback Controllers - Making Hardware with Firmware. Part I. Introduction

Introduction to the topicThis is the 1st in a series of articles looking at how we can use DSP and Feedback Control Sciences along with some mixed-signal electronics and number-crunching capability (e.g. FPGA), to create arbitrary (within reason) Electrical/Electronic Circuits with real-world connectivity. Of equal importance will be the evaluation of the functionality and performance of a practical design made from modestly-priced state of the art devices.

- Part 1:

## Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples

Developing and Validating Simulation ModelsThis article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.

- Part 1: Introduction
- Part 2: Ideal Model Examples
- Part 3: Sampled Data Aspects
- Part 4: Engineering of Evaluation Hardware
- Part 5:

## Polar Coding Notes: Channel Combining and Channel Splitting

Channel Combining

Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.

The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.

The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...

## Implementing Impractical Digital Filters

This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.

Implementing an Impractical Filter: Example 1

Reference [1] presented the digital IIR bandpass filter...

## Bank-switched Farrow resampler

Bank-switched Farrow resampler SummaryA modification of the Farrow structure with reduced computational complexity.Compared to a conventional design, the impulse response is broken into a higher number of segments. Interpolation accuracy is achieved with a lower polynomial order, requiring fewer multiplications per output sample at the expense of a higher overall number of coefficients.

Example codeThis code snippet provides a Matlab / Octave implementation.And

## Multilayer Perceptrons and Event Classification with data from CODEC using Scilab and Weka

For my first blog, I thought I would introduce the reader to Scilab [1] and Weka [2]. In order to illustrate how they work, I will put together a script in Scilab that will sample using the microphone and CODEC on your PC and save the waveform as a CSV file.

## Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples

Developing and Validating Simulation ModelsThis article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.

- Part 1: Introduction
- Part 2: Ideal Model Examples
- Part 3: Sampled Data Aspects
- Part 4: Engineering of Evaluation Hardware
- Part 5:

## Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware

Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with application examples will be maintained on the project website.- Part 1: Introduction
- Part 2:...

## Hidden Linear Algebra in DSP

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...

## Deconvolution by least squares (Using the power of linear algebra in signal processing).

When we deal with our normal discrete signal processing operations, like FIR/IIR filtering, convolution, filter design, etc. we normally think of the signals as a constant stream of numbers that we put in a sequence

## A brief look at multipath radio channels

Summary: Discussion of multipath propagation and fading in radio links

Radio channels, their effects on communications links and how to model them are a popular topic on comp.dsp. Unfortunately, for many of us there is little or no opportunity to get any "hands-on" experience with radio-related issues, because the required RF measurement equipment is not that easily available.This article gives a very simple example of a radio link that shows multipath propagation and...

## Instant CIC

Summary:

A floating point model for a CIC decimator, including the frequency response.

Description:

A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.

One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...

## Exponential Smoothing with a Wrinkle

IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by providing a set of preprocessing filters to improve the resolution of the DFT. Because of the exponential nature of sinusoidal functions, they have special mathematical properties when exponential smoothing is applied to them. These properties are derived and explained in this blog article.

Basic Exponential Smoothing

Exponential smoothing is also known as...