DSPRelated.com

Exploring Human Hearing Range

Stephen Morris October 31, 20204 comments
Human Hearing Range

In this post, I'll look at an interesting aspect of Audacity – using it to explore the threshold of human hearing. In my book Digital Signal Processing: A Gentle Introduction with Audio Examples, I go into this topic and I include a side note on the amazing hearing range of our canine companions.

Creating a Test Audio File

Audacity allows for the generation of a variety of test signals. If you click the Generate->Tone menu, it looks something like...


The Zeroing Sine Family of Window Functions

Cedron Dawg August 16, 20202 comments
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by introducing a class of well behaved window functions that the author believes to be previously unrecognized. The definition and some characteristics are displayed. The heavy math will come in later articles. This is an introduction to the family, and a very special member of it.

This is one of my longer articles. The bulk of the material is in the front half. The...


A Fast Real-Time Trapezoidal Rule Integrator

Rick Lyons June 13, 20204 comments

This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.

Background

While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...


Digging into an Audio Signal and the DSP Process Pipeline

Stephen Morris March 9, 20206 comments
In this post, I'll look at the benefits of using multiple perspectives when handling signals.A Pre-existing Audio File

Let's say we have an audio file of interest. Let's load it into Audacity and zoom in a little (using View → Zoom → Zoom In, multiple times). The figure illustrates the audio signal: just a basic single-tone signal.

By continuing to zoom into the signal, we eventually get to the point of seeing individual samples as illustrated below. Notice that I've marked one...


A Free DSP Laboratory

Stephen Morris December 18, 2019
Getting Started In Audio DSP

Imagine you're starting out studying DSP and your particular interest is audio. Wouldn't it be nice to have access to some audio signals and the tools to analyze and modify them? In the old days, a laboratory like this would most likely have cost a lot of time and money to set up. Nowadays, it doesn't have to be like this. The magic of open source software makes it quite straightforward to build yourself a simple audio DSP laboratory – just use the brilliant...


A Two Bin Solution

Cedron Dawg July 12, 2019
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by showing an implementation of how the parameters of a real pure tone can be calculated from just two DFT bin values. The equations from previous articles are used in tandem to first calculate the frequency, and then calculate the amplitude and phase of the tone. The approach works best when the tone is between the two DFT bins in terms of frequency.

The Coding...

Generating Partially Correlated Random Variables

Harry Commin March 23, 201921 comments
IntroductionIt is often useful to be able to generate two or more signals with specific cross-correlations. Or, more generally, we would like to specify an $\left(N \times N\right)$ covariance matrix, $\mathbf{R}_{xx}$, and generate $N$ signals which will produce this covariance matrix.

There are many applications in which this technique is useful. I discovered a version of this method while analysing radar systems, but the same approach can be used in a very wide range of...


Angle Addition Formulas from Euler's Formula

Cedron Dawg March 16, 20199 comments
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT), but only indirectly. The main intent is to get someone who is uncomfortable with complex numbers a little more used to them and relate them back to already known Trigonometric relationships done in Real values. It is essentially a followup to my first blog article "The Exponential Nature of the Complex Unit Circle".

Polar Coordinates

The more common way of...


Smaller DFTs from bigger DFTs

Aditya Dua January 22, 20198 comments
Introduction

Let's consider the following hypothetical situation: You have a sequence $x$ with $N/2$ points and a black box which can compute the DFT (Discrete Fourier Transform) of an $N$ point sequence. How will you use the black box to compute the $N/2$ point DFT of $x$? While the problem may appear to be a bit contrived, the answer(s) shed light on some basic yet insightful and useful properties of the DFT.

On a related note, the reverse problem of computing an $N$...


Polar Coding Notes: Channel Combining and Channel Splitting

Lyons Zhang October 19, 2018

Channel Combining  

Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.  

The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.  

The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...


Pulse Shaping in Single-Carrier Communication Systems

Eric Jacobsen April 10, 200833 comments

Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...


Frequency Dependence in Free Space Propagation

Eric Jacobsen May 14, 20088 comments

Introduction

It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:

Pr = Pt Gt Gr ( λ / 4πd )2 (1)

where the...


An s-Plane to z-Plane Mapping Example

Rick Lyons September 24, 201610 comments

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.

...

The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201517 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct


Take Control of Noise with Spectral Averaging

Sam Shearman April 20, 20183 comments

Most engineers have seen the moment-to-moment fluctuations that are common with instantaneous measurements of a supposedly steady spectrum. You can see these fluctuations in magnitude and phase for each frequency bin of your spectrogram. Although major variations are certainly reason for concern, recall that we don’t live in an ideal, noise-free world. After verifying the integrity of your measurement setup by checking connections, sensors, wiring, and the like, you might conclude that the...


An Efficient Linear Interpolation Scheme

Rick Lyons December 27, 201725 comments

This blog presents a computationally-efficient linear interpolation trick that requires at most one multiply per output sample.

Background: Linear Interpolation

Looking at Figure 1(a) let's assume we have two points, [x(0),y(0)] and [x(1),y(1)], and we want to compute the value y, on the line joining those two points, associated with the value x. 

       Figure 1: Linear interpolation: given x, x(0), x(1), y(0), and y(1), compute the value of y. ...


Phase and Amplitude Calculation for a Pure Real Tone in a DFT: Method 1

Cedron Dawg May 21, 20151 comment
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the phase and amplitude of a non-integer frequency real tone in a DFT. The linearity of the Fourier Transform is exploited to reframe the problem as the equivalent of finding a set of coordinates in a specific vector space. The found coordinates are then used to calculate the phase and amplitude of the pure real tone in the DFT. This article...


Sinusoidal Frequency Estimation Based on Time-Domain Samples

Rick Lyons April 20, 201719 comments

The topic of estimating a noise-free real or complex sinusoid's frequency, based on fast Fourier transform (FFT) samples, has been presented in recent blogs here on dsprelated.com. For completeness, it's worth knowing that simple frequency estimation algorithms exist that do not require FFTs to be performed . Below I present three frequency estimation algorithms that use time-domain samples, and illustrate a very important principle regarding so called "exact"...


Signed serial-/parallel multiplication

Markus Nentwig February 16, 2014

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

Summary
  • A detailed discussion of bit-level trickstery in signed-signed multiplication
  • Algorithm based on Wikipedia example
  • Includes a Verilog implementation with parametrized bit width
Signed serial-/parallel multiplication

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...


Discrete-Time PLLs, Part 1: Basics

Reza Ameli December 1, 20159 comments

In this series of tutorials on discrete-time PLLs we will be focusing on Phase-Locked Loops that can be implemented in discrete-time signal proessors such as FPGAs, DSPs and of course, MATLAB.