## Discrete-Time PLLs, Part 1: Basics

Design Files: Part1.slx

Hi everyone,

In this series of tutorials on discrete-time PLLs we will be focusing on Phase-Locked Loops that can be implemented in discrete-time signal proessors such as FPGAs, DSPs and of course, MATLAB.

In the first part of the series, we will be reviewing the basics of continuous-time baseband PLLs and we will see some useful mathematics that will give us insight into the inners working of PLLs. In the second part, we will focus on...

## Compressive Sensing - Recovery of Sparse Signals (Part 1)

November 28, 2015

The amount of data that is generated has been increasing at a substantial rate since the beginning of the digital revolution. The constraints on the sampling and reconstruction of digital signals are derived from the well-known Nyquist-Shannon sampling theorem. To review, the theorem states that a band-limited signal, with the highest frequency of $f_{max}$, can be completely reconstructed from its samples if the sampling rate, $f_{s}$, is at least twice the signal bandwidth. If the...

## Analytic Signal

In communication theory and modulation theory we always deal with two phases: In-phase (I) and Quadrature-phase (Q). The question that I will discuss in this blog is that why we use two phases and not more.

Any real band-limited signal along with its Hilbert transformed pair form an analytic signal. We normally use the analytic signal for modulation. A modulated signal is actually a carrier or the sine signal that one attribute of it is changing with time which is our signal....

## Multilayer Perceptrons and Event Classification with data from CODEC using Scilab and Weka

November 25, 2015

For my first blog, I thought I would introduce the reader to Scilab [1] and Weka [2].  In order to illustrate how they work, I will put together a script in Scilab that will sample using the microphone and CODEC on your PC and save the waveform as a CSV file.  Then, we can take the CSV file and open it in Weka.  Once in Weka, we have a lot of paths to consider in order to classify it.  I use the term classify loosely since there are many things you can do with data sets...

## Maximum Likelihood Estimation

November 24, 2015

Any observation has some degree of noise content that makes our observations uncertain. When we try to make conclusions based on noisy observations, we have to separate the dynamics of a signal from noise. This is the point that estimation starts. Any time that we analyse noisy observations to make decisions, we are estimating some parameters. Parameters are mainly used to simplify the description of a dynamic.

Noise by its definition is a...

## Approximating the area of a chirp by fitting a polynomial

Once in a while we need to estimate the area of a dataset in which we are interested. This area could give us, for example, force (mass vs acceleration) or electric power (electric current vs charge).

One way to do that is fitting a curve on our data, and let's face it: this is not that easy. In this post we will work on this issue using Python and its packages. If you do not have Python installed on your system, check here how to...

## Deconvolution by least squares (Using the power of linear algebra in signal processing).

When we deal with our normal discrete signal processing operations, like FIR/IIR filtering, convolution, filter design, etc. we normally think of the signals as a constant stream of numbers that we put in a sequence, such as $x(n)$ with $n\in\mathbb{Z}$. This is at first the most intuitive way of thinking about it, because normally in a digital signal processing system (especially when applied in real time), we take some analogue signal from a sensor like a microphone, convert it...

## The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct

## Phase and Amplitude Calculation for a Pure Real Tone in a DFT: Method 1

May 21, 2015
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the phase and amplitude of a non-integer frequency real tone in a DFT. The linearity of the Fourier Transform is exploited to reframe the problem as the equivalent of finding a set of coordinates in a specific vector space. The found coordinates are then used to calculate the phase and amplitude of the pure real tone in the DFT. This article...

## Exact Frequency Formula for a Pure Real Tone in a DFT

Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a major theoretical advance in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is...

## Hidden Linear Algebra in DSP

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...

## Python number crunching faster? Part I

Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc.  I have been using Python and the common numerical and scientific packages available.  Personally, I have found this to be very useful in my work.  Lately there has been some chatter on speeding up Python.

From another project I follow, MyHDL, I was introduced to the Python JIT compiler,

## Bank-switched Farrow resampler

Bank-switched Farrow resampler Summary

A modification of the Farrow structure with reduced computational complexity.Compared to a conventional design, the impulse response is broken into a higher number of segments. Interpolation accuracy is achieved with a lower polynomial order, requiring fewer multiplications per output sample at the expense of a higher overall number of coefficients.

Example code

This code snippet provides a Matlab / Octave implementation.And

## Feedback Controllers - Making Hardware with Firmware. Part 7. Turbo-charged DSP Oscillators

This article will look at some DSP Sine-wave oscillators and will show how an FPGA with limited floating-point performance due to latency, can be persuaded to produce much higher sample-rate sine-waves of high quality.

Comparisons will be made between implementations on Intel Cyclone V and Cyclone 10 GX FPGAs. An Intel numerically controlled oscillator

## A Fast Real-Time Trapezoidal Rule Integrator

This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.

Background

While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...

## Generating Partially Correlated Random Variables

IntroductionIt is often useful to be able to generate two or more signals with specific cross-correlations. Or, more generally, we would like to specify an $\left(N \times N\right)$ covariance matrix, $\mathbf{R}_{xx}$, and generate $N$ signals which will produce this covariance matrix.

There are many applications in which this technique is useful. I discovered a version of this method while analysing radar systems, but the same approach can be used in a very wide range of...

## Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples

August 24, 2017
Developing and Validating Simulation Models

This article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.

## Deconvolution by least squares (Using the power of linear algebra in signal processing).

When we deal with our normal discrete signal processing operations, like FIR/IIR filtering, convolution, filter design, etc. we normally think of the signals as a constant stream of numbers that we put in a sequence, such as $x(n)$ with $n\in\mathbb{Z}$. This is at first the most intuitive way of thinking about it, because normally in a digital signal processing system (especially when applied in real time), we take some analogue signal from a sensor like a microphone, convert it...

## Sampling bandpass signals

Fig. 1 shows an example of how the spectrum of a bandpass signal sampled with $f_s$ (Fig. 1a) arises in the baseband with $−f_s / 2 ≤ f < f_s/2$. The bandpass signal is assumed to have a center frequency $f_c = (f_{max} + f_{min})/2$ and bandwidth \$\Delta f...