Compute the Frequency Response of a Multistage Decimator

Neil Robertson February 10, 20192 comments

Figure 1a shows the block diagram of a decimation-by-8 filter, consisting of a low-pass finite impulse response (FIR) filter followed by downsampling by 8 [1].  A more efficient version is shown in Figure 1b, which uses three cascaded decimate-by-two filters.  This implementation has the advantages that only FIR 1 is sampled at the highest sample rate, and the total number of filter taps is lower.

The frequency response of the single-stage decimator before downsampling is just...


Use Matlab Function pwelch to Find Power Spectral Density – or Do It Yourself

Neil Robertson January 13, 201921 comments

In my last post, we saw that finding the spectrum of a signal requires several steps beyond computing the discrete Fourier transform (DFT)[1].  These include windowing the signal, taking the magnitude-squared of the DFT, and computing the vector of frequencies.  The Matlab function pwelch [2] performs all these steps, and it also has the option to use DFT averaging to compute the so-called Welch power spectral density estimate [3,4].

In this article, I’ll present some...


Evaluate Window Functions for the Discrete Fourier Transform

Neil Robertson December 18, 2018

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum.  For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT.  Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3].  There are many different window functions and each produces a different approximation of the spectrum.  In this post, we’ll present Matlab code that...


Design a DAC sinx/x Corrector

Neil Robertson July 22, 20187 comments

This post provides a Matlab function that designs linear-phase FIR sinx/x correctors.  It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.

A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process.  In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses.  These are converted by the DAC into contiguous pulses...


Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

Neil Robertson May 27, 201823 comments

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA.  This situation is shown in Figure 1.  Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2.  This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1].  In that PLL, we...


ADC Clock Jitter Model, Part 2 – Random Jitter

Neil Robertson April 22, 20185 comments

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter.  Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered Gaussian sequence as the jitter source.  What we are calling jitter can also be called time jitter, phase jitter, or phase noise.  It’s all the same phenomenon.  Typically, we call it jitter when we have a time-domain representation,...


ADC Clock Jitter Model, Part 1 – Deterministic Jitter

Neil Robertson April 16, 201815 comments

Analog to digital converters (ADC’s) have several imperfections that affect communications signals, including thermal noise, differential nonlinearity, and sample clock jitter [1, 2].  As shown in Figure 1, the ADC has a sample/hold function that is clocked by a sample clock.  Jitter on the sample clock causes the sampling instants to vary from the ideal sample time.  This transfers the jitter from the sample clock to the input signal.

In this article, I present a Matlab...


Phase or Frequency Shifter Using a Hilbert Transformer

Neil Robertson March 25, 201819 comments

In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter.  In either case, the input is a real signal and the output is a real signal.  We’ll use some simple Matlab code to simulate these systems.  After that, we’ll go into a little more detail on Hilbert transformer theory and design. 

This article is available in PDF format for easy printing.

Phase Shifter

A conceptual diagram...


Coefficients of Cascaded Discrete-Time Systems

Neil Robertson March 4, 2018

In this article, we’ll show how to compute the coefficients that result when you cascade discrete-time systems.  With the coefficients in hand, it’s then easy to compute the time or frequency response.  The computation presented here can also be used to find coefficients of mixed discrete-time and continuous-time systems, by using a discrete time model of the continuous-time portion [1].

This article is available in PDF format for...


Design IIR Filters Using Cascaded Biquads

Neil Robertson February 11, 201817 comments
This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads.  We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix.  Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc).  As we’ll see, the cascaded-biquad design is less sensitive to coefficient...

Evaluate Window Functions for the Discrete Fourier Transform

Neil Robertson December 18, 2018

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum.  For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT.  Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3].  There are many different window functions and each produces a different approximation of the spectrum.  In this post, we’ll present Matlab code that...


The Power Spectrum

Neil Robertson October 8, 2016

Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis.  However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain.  This post shows how to calculate an accurate power spectrum.

Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...


IIR Bandpass Filters Using Cascaded Biquads

Neil Robertson April 20, 20196 comments

In an earlier post [1], we implemented lowpass IIR filters using a cascade of second-order IIR filters, or biquads.  This post provides a Matlab function to do the same for Butterworth bandpass IIR filters.  Compared to conventional implementations, bandpass filters based on biquads are less sensitive to coefficient quantization [2].  This becomes important when designing narrowband filters.

A biquad section block diagram using the Direct Form II structure [3,4] is shown in...


Matlab Code to Synthesize Multiplierless FIR Filters

Neil Robertson October 31, 20163 comments

This article presents Matlab code to synthesize multiplierless Finite Impulse Response (FIR) lowpass filters.

A filter coefficient can be represented as a sum of powers of 2.  For example, if a coefficient = decimal 5 multiplies input x, the output is $y= 2^2*x + 2^0*x$.  The factor of $2^2$ is then implemented with a shift of 2 bits.  This method is not efficient for coefficients having a lot of 1’s, e.g. decimal 31 = 11111.  To reduce the number of non-zero...


Design a DAC sinx/x Corrector

Neil Robertson July 22, 20187 comments

This post provides a Matlab function that designs linear-phase FIR sinx/x correctors.  It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.

A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process.  In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses.  These are converted by the DAC into contiguous pulses...


Design IIR Band-Reject Filters

Neil Robertson January 17, 2018

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis.  Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters.  Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies.   I’ll discuss the differences between the two approaches later in this...


Canonic Signed Digit (CSD) Representation of Integers

Neil Robertson February 18, 2017

In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients.  I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values.  Here I want to use that function to illustrate a few properties of CSD numbers.

In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}.  Thus, for example, the binary value 1 1...


Interpolation Basics

Neil Robertson August 20, 20199 comments

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal.  Figure 1 illustrates what we mean by interpolation.  The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts.  The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1].  For example, if...


Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

Neil Robertson May 27, 201823 comments

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA.  This situation is shown in Figure 1.  Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2.  This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1].  In that PLL, we...


Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT

Neil Robertson March 9, 201920 comments

One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate.  The derivation of can be found in textbooks [1,2].  You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).

The DFT of the sampled signal x(n) is defined as:

$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$

Where

X(k) = discrete frequency spectrum of time sequence x(n)