There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane. I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way. I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix.This post is available in PDF format for easy...
Modeling a Continuous-Time System with Matlab
Many of us are familiar with modeling a continuous-time system in the frequency domain using its transfer function H(s) or H(jω). However, finding the time response can be challenging, and traditionally involves finding the inverse Laplace transform of H(s). An alternative way to get both time and frequency responses is to transform H(s) to a discrete-time system H(z) using the impulse-invariant transform [1,2]. This method provides an exact match to the continuous-time...
Canonic Signed Digit (CSD) Representation of Integers
In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients. I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values. Here I want to use that function to illustrate a few properties of CSD numbers.
In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}. Thus, for example, the binary value 1 1...
Matlab Code to Synthesize Multiplierless FIR Filters
This article presents Matlab code to synthesize multiplierless Finite Impulse Response (FIR) lowpass filters.
A filter coefficient can be represented as a sum of powers of 2. For example, if a coefficient = decimal 5 multiplies input x, the output is $y= 2^2*x + 2^0*x$. The factor of $2^2$ is then implemented with a shift of 2 bits. This method is not efficient for coefficients having a lot of 1’s, e.g. decimal 31 = 11111. To reduce the number of non-zero...
The Power Spectrum
Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis. However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain. This post shows how to calculate an accurate power spectrum.
Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...
Digital PLL's -- Part 2
In Part 1, we found the time response of a 2nd order PLL with a proportional + integral (lead-lag) loop filter. Now let’s look at this PLL in the Z-domain [1, 2]. We will find that the response is characterized by a loop natural frequency ωn and damping coefficient ζ.
Having a Z-domain model of the DPLL will allow us to do three things:
Compute the values of loop filter proportional gain KL and integrator gain KI that give the desired loop natural...Digital PLL's -- Part 1
1. IntroductionFigure 1.1 is a block diagram of a digital PLL (DPLL). The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal. The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance. The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.
One application of the DPLL is to recover the timing in a digital...
Peak to Average Power Ratio and CCDF
Peak to Average Power Ratio (PAPR) is often used to characterize digitally modulated signals. One example application is setting the level of the signal in a digital modulator. Knowing PAPR allows setting the average power to a level that is just low enough to minimize clipping.
However, for a random signal, PAPR is a statistical quantity. We have to ask, what is the probability of a given peak power? Then we can decide where to set the average...
Filter a Rectangular Pulse with no Ringing
To filter a rectangular pulse without any ringing, there is only one requirement on the filter coefficients: they must all be positive. However, if we want the leading and trailing edge of the pulse to be symmetrical, then the coefficients must be symmetrical. What we are describing is basically a window function.
Consider a rectangular pulse 32 samples long with fs = 1 kHz. Here is the Matlab code to generate the pulse:
N= 64; fs= 1000; % Hz sample...Third-Order Distortion of a Digitally-Modulated Signal
Analog designers are always harping about amplifier third-order distortion. Why? In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.
In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude. With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:
$$y=...
ADC Clock Jitter Model, Part 1 – Deterministic Jitter
Analog to digital converters (ADC’s) have several imperfections that affect communications signals, including thermal noise, differential nonlinearity, and sample clock jitter [1, 2]. As shown in Figure 1, the ADC has a sample/hold function that is clocked by a sample clock. Jitter on the sample clock causes the sampling instants to vary from the ideal sample time. This transfers the jitter from the sample clock to the input signal.
In this article, I present a Matlab...
Modeling a Continuous-Time System with Matlab
Many of us are familiar with modeling a continuous-time system in the frequency domain using its transfer function H(s) or H(jω). However, finding the time response can be challenging, and traditionally involves finding the inverse Laplace transform of H(s). An alternative way to get both time and frequency responses is to transform H(s) to a discrete-time system H(z) using the impulse-invariant transform [1,2]. This method provides an exact match to the continuous-time...
Design Square-Root Nyquist Filters
In his book on multirate signal processing, harris presents a nifty technique for designing square-root Nyquist FIR filters with good stopband attenuation [1]. In this post, I describe the method and provide a Matlab function for designing the filters. You can find a Matlab function by harris for designing the filters at [2].
BackgroundSingle-carrier modulation, such as QAM, uses filters to limit the bandwidth of the signal. Figure 1 shows a simplified QAM system block...
A Direct Digital Synthesizer with Arbitrary Modulus
Suppose you have a system with a 10 MHz sample clock, and you want to generate a sampled sinewave at any frequency below 5 MHz on 500 kHz spacing; i.e., 0.5, 1.0, 1.5, … MHz. In other words, f = k*fs/20, where k is an integer and fs is sample frequency. This article shows how to do this using a simple Direct Digital Synthesizer (DDS) with a look-up table that is at most 20 entries long. We’ll also demonstrate a Quadrature-output DDS. A note on...
Matlab Code to Synthesize Multiplierless FIR Filters
This article presents Matlab code to synthesize multiplierless Finite Impulse Response (FIR) lowpass filters.
A filter coefficient can be represented as a sum of powers of 2. For example, if a coefficient = decimal 5 multiplies input x, the output is $y= 2^2*x + 2^0*x$. The factor of $2^2$ is then implemented with a shift of 2 bits. This method is not efficient for coefficients having a lot of 1’s, e.g. decimal 31 = 11111. To reduce the number of non-zero...
Coefficients of Cascaded Discrete-Time Systems
In this article, we’ll show how to compute the coefficients that result when you cascade discrete-time systems. With the coefficients in hand, it’s then easy to compute the time or frequency response. The computation presented here can also be used to find coefficients of mixed discrete-time and continuous-time systems, by using a discrete time model of the continuous-time portion [1].
This article is available in PDF format for...
Filter a Rectangular Pulse with no Ringing
To filter a rectangular pulse without any ringing, there is only one requirement on the filter coefficients: they must all be positive. However, if we want the leading and trailing edge of the pulse to be symmetrical, then the coefficients must be symmetrical. What we are describing is basically a window function.
Consider a rectangular pulse 32 samples long with fs = 1 kHz. Here is the Matlab code to generate the pulse:
N= 64; fs= 1000; % Hz sample...There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane. I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way. I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix.This post is available in PDF format for easy...
There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane. I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way. I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix.This post is available in PDF format for easy...
A Simplified Matlab Function for Power Spectral Density
In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2]. Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs). However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.
In this post, I create a simplified PSD function by putting a...
Model Signal Impairments at Complex Baseband
In this article, we develop complex-baseband models for several signal impairments: interfering carrier, multipath, phase noise, and Gaussian noise. To provide concrete examples, we’ll apply the impairments to a QAM system. The impairment models are Matlab functions that each use at most seven lines of code. Although our example system is QAM, the models can be used for any complex-baseband signal.
I used a very simple complex-baseband model of a QAM system in my last
A Direct Digital Synthesizer with Arbitrary Modulus
Suppose you have a system with a 10 MHz sample clock, and you want to generate a sampled sinewave at any frequency below 5 MHz on 500 kHz spacing; i.e., 0.5, 1.0, 1.5, … MHz. In other words, f = k*fs/20, where k is an integer and fs is sample frequency. This article shows how to do this using a simple Direct Digital Synthesizer (DDS) with a look-up table that is at most 20 entries long. We’ll also demonstrate a Quadrature-output DDS. A note on...
Design Square-Root Nyquist Filters
In his book on multirate signal processing, harris presents a nifty technique for designing square-root Nyquist FIR filters with good stopband attenuation [1]. In this post, I describe the method and provide a Matlab function for designing the filters. You can find a Matlab function by harris for designing the filters at [2].
BackgroundSingle-carrier modulation, such as QAM, uses filters to limit the bandwidth of the signal. Figure 1 shows a simplified QAM system block...
Third-Order Distortion of a Digitally-Modulated Signal
Analog designers are always harping about amplifier third-order distortion. Why? In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.
In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude. With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:
$$y=...
Compute Images/Aliases of CIC Interpolators/Decimators
Cascade-Integrator-Comb (CIC) filters are efficient fixed-point interpolators or decimators. For these filters, all coefficients are equal to 1, and there are no multipliers. They are typically used when a large change in sample rate is needed. This article provides two very simple Matlab functions that can be used to compute the spectral images of CIC interpolators and the aliases of CIC decimators.
1. CIC InterpolatorsFigure 1 shows three interpolate-by-M...
Find Aliased ADC or DAC Harmonics (with animation)
When a sinewave is applied to a data converter (ADC or DAC), device nonlinearities produce harmonics. If a harmonic frequency is greater than the Nyquist frequency, the harmonic appears as an alias. In this case, it is not at once obvious if a given spur is a harmonic, and if so, its order. In this article, we’ll present Matlab code to simulate the data converter nonlinearities and find the harmonic alias frequencies. Note that Analog Devices has an online tool for...
Add a Power Marker to a Power Spectral Density (PSD) Plot
Perhaps we should call most Power Spectral Density (PSD) calculations relative PSD, because usually we don’t have to worry about absolute power levels. However, for cases (e.g., measurements or simulations) where we are concerned with absolute power, it would be nice to be able to display it on a PSD plot. Unfortunately, you can’t read the power directly from the plot. For example, the plotted spectral peak of a narrowband signal, such as a sinewave, is lower than the...