## Above-Average Smoothing of Impulsive Noise

In this blog I show a neat noise reduction scheme that has the high-frequency noise reduction behavior of a traditional moving average process but with much better impulsive-noise suppression.

In practice we may be required to make precise measurements in the presence of highly-impulsive noise. Without some sort of analog signal conditioning, or digital signal processing, it can be difficult to obtain stable and repeatable, measurements. This impulsive-noise smoothing trick,...

## Went 280km/h (174mph) in a Porsche Panamera in Germany!

Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.

## Looking For a Second Toolbox? This One's For Sale

In case you're looking for a second toolbox, this used toolbox is for sale.The blue-enameled steel toolbox measures 13 x 7 x 5 inches and, when opened, has a three-section tray attached to the lid. Showing signs of heavy use, the interior, tray, and exterior have collected a fair amount of dirt and grease and bear many scratches. The bottom of the box is worn from having been slid on rough surfaces.

The toolbox currently resides in Italy. But don't worry, it can be shipped to you....

## Embedded Toolbox: Programmer's Calculator

Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.

I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...

## Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...

## Going back to Germany!

A couple of blog posts ago, I wrote that the decision to go to ESC Boston ended up being a great one for many different reasons. I came back from the conference energized and really happy that I went.

These feelings were amplified a few days after my return when I received an email from Rolf Segger, the founder of SEGGER Microcontroller (check out their very new website), asking if I would be interested in visiting their headquarters...

## Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

IntroductionThis is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.

A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...

## Modeling a Continuous-Time System with Matlab

Many of us are familiar with modeling a continuous-time system in the frequency domain using its transfer function H(s) or H(jω). However, finding the time response can be challenging, and traditionally involves finding the inverse Laplace transform of H(s). An alternative way to get both time and frequency responses is to transform H(s) to a discrete-time system H(z) using the impulse-invariant transform [1,2]. This method provides an exact match to the continuous-time...

## ESC Boston's Videos are Now Up

In my last blog, I told you about my experience at ESC Boston and the few videos that I was planning to produce and publish. Here they are, please have a look and any feedback (positive or negative) is appreciated.

Short HighlightThis is a very short (one minute) montage of some of the footage that I shot at the show & conference. In future shows, I absolutely need to insert clips here and there of engineers saying a few words about the conference (why they...

## How to Find a Fast Floating-Point atan2 Approximation

Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:$$ atan(z) \approx \dfrac{z}{1.0 +...

## Is It True That *j* is Equal to the Square Root of -1 ?

A few days ago, on the YouTube.com web site, I watched an interesting video concerning complex numbers and the j operator. The video's author claimed that the statement "j is equal to the square root of negative one" is incorrect. What he said was:

He justified his claim by going through the following exercise, starting with:

Based on the algebraic identity:

the author rewrites Eq. (1) as:

If we assume

Eq. (3) can be rewritten...

## Do Multirate Systems Have Transfer Functions?

The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].

Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...

## Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved

This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.

Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...

## Are DSPs Dead ?

Are DSPs Dead ?Former Texas Instruments Sr. Fellow Gene Frantz and former TI Fellow Alan Gatherer wrote a 2017 IEEE article about the "death and rebirth" of DSP as a discipline, explaining that now signal processing provides indispensable building blocks in widely popular and lucrative areas such as data science and machine learning. The article implies that DSP will now be taught in university engineering programs as its linear systems and electromagnetics...

## Goertzel Algorithm for a Non-integer Frequency Index

If you've read about the Goertzel algorithm, you know it's typically presented as an efficient way to compute an individual kth bin result of an N-point discrete Fourier transform (DFT). The integer-valued frequency index k is in the range of zero to N-1 and the standard block diagram for the Goertzel algorithm is shown in Figure 1. For example, if you want to efficiently compute just the 17th DFT bin result (output sample X17) of a 64-point DFT you set integer frequency index k = 17 and N =...

## A New Contender in the Quadrature Oscillator Race

This blog advocates a relatively new and interesting quadrature oscillator developed by A. David Levine in 2009 and independently by Martin Vicanek in 2015 [1]. That oscillator is shown in Figure 1.

The time domain equations describing the Figure 1 oscillator are

w(n) =...

## Model Signal Impairments at Complex Baseband

In this article, we develop complex-baseband models for several signal impairments: interfering carrier, multipath, phase noise, and Gaussian noise. To provide concrete examples, we’ll apply the impairments to a QAM system. The impairment models are Matlab functions that each use at most seven lines of code. Although our example system is QAM, the models can be used for any complex-baseband signal.

I used a very simple complex-baseband model of a QAM system in my last

## Design IIR Band-Reject Filters

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters. Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies. I’ll discuss the differences between the two approaches later in this...

## Dealing With Fixed Point Fractions

Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...

## TCP/IP interface (Matlab/Octave)

Communicate with measurement instruments via Ethernet (no-toolbox-Matlab or Octave)

PurposeMeasurement automation is digital signal processing in a wider sense: Getting a digital signal from an analog world usually involves some measurement instruments, for example a spectrum analyzer. Modern instruments, and also many off-the-shelf prototyping boards such as FPGA cards [1] or microcontrollers [2] are able to communicate via Ethernet. Here, I provide some basic mex-functions (compiled C...

## Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes

Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.

This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...

## DFT Graphical Interpretation: Centroids of Weighted Roots of Unity

IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...

## ADC Clock Jitter Model, Part 1 – Deterministic Jitter

Analog to digital converters (ADC’s) have several imperfections that affect communications signals, including thermal noise, differential nonlinearity, and sample clock jitter [1, 2]. As shown in Figure 1, the ADC has a sample/hold function that is clocked by a sample clock. Jitter on the sample clock causes the sampling instants to vary from the ideal sample time. This transfers the jitter from the sample clock to the input signal.

In this article, I present a Matlab...

## Computing Chebyshev Window Sequences

Chebyshev windows (also called Dolph-Chebyshev, or Tchebyschev windows), have several useful properties. Those windows, unlike the fixed Hanning, Hamming, or Blackman window functions, have adjustable sidelobe levels. For a given user-defined sidelobe level and window sequence length, Chebyshev windows yield the most narrow mainlobe compared to any fixed window functions.

However, for some reason, detailed descriptions of how to compute Chebyshev window sequences are not readily available...

## Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals

Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:

- the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
- the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream

The unusually-good correlation properties...

## Multimedia Processing with FFMPEG

FFMPEG is a set of libraries and a command line tool for encoding and decoding audio and video in many different formats. It is a free software project for manipulating/processing multimedia data. Many open source media players are based on FFMPEG libraries.

## Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction

Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.

This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.

Ernie, You Have a Banana in Your EarI have had a really really tough time writing this article. I like the...

## 5G NR QC-LDPC Encoding Algorithm

3GPP 5G has been focused on structured LDPC codes known as quasi-cyclic low-density parity-check (QC-LDPC) codes, which exhibit advantages over other types of LDPC codes with respect to the hardware implementations of encoding and decoding using simple shift registers and logic circuits.

5G NR QC-LDPC Circulant Permutation MatrixA circular permutation matrix ${\bf I}(P_{i,j})$ of size $Z_c \times Z_c$ is obtained by circularly shifting the identity matrix $\bf I$ of...

## The DFT of Finite-Length Time-Reversed Sequences

Recently I've been reading papers on underwater acoustic communications systems and this caused me to investigate the frequency-domain effects of time-reversal of time-domain sequences. I created this blog because there is so little coverage of this topic in the literature of DSP.

This blog reviews the two types of time-reversal of finite-length sequences and summarizes their discrete Fourier transform (DFT) frequency-domain characteristics.The Two Types of Time-Reversal in DSP

...## Launch of Youtube Channel: My First Videos - Embedded World 2017

I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience. I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.

So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch. Trade shows are...