DSPRelated.com

Linear Feedback Shift Registers for the Uninitiated, Part XIII: System Identification

Jason Sachs March 12, 20181 comment

Last time we looked at spread-spectrum techniques using the output bit sequence of an LFSR as a pseudorandom bit sequence (PRBS). The main benefit we explored was increasing signal-to-noise ratio (SNR) relative to other disturbance signals in a communication system.

This time we’re going to use a PRBS from LFSR output to do something completely different: system identification. We’ll show two different methods of active system identification, one using sine waves and the other...


Coefficients of Cascaded Discrete-Time Systems

Neil Robertson March 4, 2018

In this article, we’ll show how to compute the coefficients that result when you cascade discrete-time systems.  With the coefficients in hand, it’s then easy to compute the time or frequency response.  The computation presented here can also be used to find coefficients of mixed discrete-time and continuous-time systems, by using a discrete time model of the continuous-time portion [1].

This article is available in PDF format for...


Design IIR Filters Using Cascaded Biquads

Neil Robertson February 11, 201828 comments

This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads.  We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix.  Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc).  As we’ll see, the cascaded-biquad design is less sensitive to coefficient...


Design IIR Highpass Filters

Neil Robertson February 3, 20182 comments

This post is the fourth in a series of tutorials on IIR Butterworth filter design.  So far we covered lowpass [1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters.  The general approach, as before, has six steps:

Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the analog highpass filter (pre-warping). Transform the...

Design IIR Band-Reject Filters

Neil Robertson January 17, 20182 comments

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis.  Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters.  Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies.   I’ll discuss the differences between the two approaches later in this...


Design IIR Bandpass Filters

Neil Robertson January 6, 201811 comments

In this post, I present a method to design Butterworth IIR bandpass filters.  My previous post [1] covered lowpass IIR filter design, and provided a Matlab function to design them.  Here, we’ll do the same thing for IIR bandpass filters, with a Matlab function bp_synth.m.  Here is an example function call for a bandpass filter based on a 3rd order lowpass prototype:

N= 3; % order of prototype LPF fcenter= 22.5; % Hz center frequency, Hz bw= 5; ...

Phase and Amplitude Calculation for a Pure Complex Tone in a DFT

Cedron Dawg January 6, 2018
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from a DFT bin value and knowing the frequency. This is a much simpler problem to solve than the corresponding case for a pure real tone which I covered in an earlier blog article[1]. In the noiseless single tone case, these equations will be exact. In the presence of noise or other tones...


Feedback Controllers - Making Hardware with Firmware. Part 7. Turbo-charged DSP Oscillators

Steve Maslen January 5, 20187 comments
This article will look at some DSP Sine-wave oscillators and will show how an FPGA with limited floating-point performance due to latency, can be persuaded to produce much higher sample-rate sine-waves of high quality. 

Comparisons will be made between implementations on Intel Cyclone V and Cyclone 10 GX FPGAs. An Intel numerically controlled oscillator


Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals

Jason Sachs December 29, 20171 comment

Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:

  • the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
  • the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream

The unusually-good correlation properties...


An Efficient Linear Interpolation Scheme

Rick Lyons December 27, 201725 comments

This blog presents a computationally-efficient linear interpolation trick that requires at most one multiply per output sample.

Background: Linear Interpolation

Looking at Figure 1(a) let's assume we have two points, [x(0),y(0)] and [x(1),y(1)], and we want to compute the value y, on the line joining those two points, associated with the value x. 

       Figure 1: Linear interpolation: given x, x(0), x(1), y(0), and y(1), compute the value of y. ...


Benford's law solved with DSP

Steve Smith February 22, 20087 comments

I have a longtime interest in the mystery of 1/f noise. A few years ago I came across Benford’s law, another puzzle that seemed to have many of the same characteristics.

Suppose you collect a large group of seemingly random numbers, such as might appear in a newspaper or financial report. Benford’s law relates to the leading digit of each number, such as "4" in 4.268, "3" in 0.0312, and "9" in -932.34. Since there are nine possible leading digits...


New Comments System (please help me test it)

Stephane Boucher October 4, 201617 comments

I thought it would take me a day or two to implement, it took almost two weeks...

But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.  

Which means that:

  • You can easily add images, either by drag and drop or through the 'Insert Image' button
  • You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
  • You can add code snippets and they will be highlighted with highlights.js
  • You can edit...

Design study: 1:64 interpolating pulse shaping FIR

Markus Nentwig December 26, 20115 comments

This article is the documentation to a code snippet that originated from a discussion on comp.dsp.

The task is to design a root-raised cosine filter with a rolloff of a=0.15 that interpolates to 64x the symbol rate at the input.

The code snippet shows a solution that is relatively straightforward to design and achieves reasonably good efficiency using only FIR filters.

Motivation: “simple solutions?”

Time-Domain Periodicity and the Discrete Fourier Transform

Eric Jacobsen July 13, 2012

Introduction

The Discrete Fourier Transform (DFT) and it's fast-algorithm implementation, the Fast Fourier Transform (FFT), are fundamental tools for processing and analysis of digital signals. While the continuous Fourier Transform and its inverse integrate over all time from minus infinity to plus infinity, and all frequencies from minus infinity to plus infinity, practical application of its discrete cousins can only be made over finite time and frequency intervals. The discrete nature...


Online DSP Classes: Why Such a High Dropout Rate?

Rick Lyons October 7, 201718 comments

Last year the IEEE Signal Processing Magazine published a lengthy article describing three university-sponsored online digital signal processing (DSP) courses [1]. The article detailed all the effort the professors expended in creating those courses and the courses' perceived values to students. 

However, one fact that struck me as important, but not thoroughly addressed in the article, was the shocking dropout rate of those online courses. For two of the courses the article's...


Sensors Expo - Trip Report & My Best Video Yet!

Stephane Boucher August 3, 20183 comments

This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.  

Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip.  If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...


Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved

Rick Lyons November 23, 20127 comments

This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.

Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...


Is It True That j is Equal to the Square Root of -1 ?

Rick Lyons September 16, 20136 comments

A few days ago, on the YouTube.com web site, I watched an interesting video concerning complex numbers and the j operator. The video's author claimed that the statement "j is equal to the square root of negative one" is incorrect. What he said was:

He justified his claim by going through the following exercise, starting with:

Based on the algebraic identity:

the author rewrites Eq. (1) as:

If we assume

Eq. (3) can be rewritten...


Return of the Delta-Sigma Modulators, Part 1: Modulation

Jason Sachs May 28, 2023

About a decade ago, I wrote two articles:

Each of these are about delta-sigma modulation, but they’re short and sweet, and not very in-depth. And the 2013 article was really more about analog-to-digital converters. So we’re going to revisit the subject, this time with a lot more technical depth — in fact, I’ve had to split this...


Differentiating and integrating discrete signals

Allen Downey December 14, 20152 comments

I am back at work on Think DSP, adding a new chapter on differentiation and integration.  In the previous chapter (which you can read here) I present Gaussian smoothing, show how smoothing in the time domain corresponds to a low-pass filter in the frequency domain, and present the Convolution Theorem.

In the current chapter, I start with the first difference operation (diff in Numpy) and show that it corresponds to a high-pass filter in the frequency domain.  I use historical stock...