Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.

Steve Maslen December 3, 20177 comments

This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.

  • Part 6: Self-Calibration, Measurements and Signalling (this part)
  • Part 5:

Simplest Calculation of Half-band Filter Coefficients

Neil Robertson November 20, 20179 comments

Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4  [1]*.  And it so happens that almost half of the coefficients are zero.  The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2.  Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.

Here we will compute half-band...

Feedback Controllers - Making Hardware with Firmware. Part 5. Some FPGA Aspects.

Steve Maslen November 14, 2017
This part of the on-going series of articles looks at a variety of aspects concerning the FPGA device which provides the high-speed maths capability for the low-latency controller and the arbitrary circuit generator application. In due course a complete specification along with  application  examples will be maintained on the project website here.

Improved Three Bin Exact Frequency Formula for a Pure Real Tone in a DFT

Cedron Dawg November 6, 2017

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by extending the exact two bin formulas for the frequency of a real tone in a DFT to the three bin case. This article is a direct extension of my prior article "Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT"[1]. The formulas derived in the previous article are also presented in this article in the computational order, rather than the indirect order they were...

There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle

Neil Robertson October 23, 20179 comments
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane.  I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way.  I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix. 

This post is available in PDF format for easy...

There and Back Again: Time of Flight Ranging between Two Wireless Nodes

Qasim Chaudhari October 23, 20175 comments

With the growth in the Internet of Things (IoT) products, the number of applications requiring an estimate of range between two wireless nodes in indoor channels is growing very quickly as well. Therefore, localization is becoming a red hot market today and will remain so in the coming years.

One question that is perplexing is that many companies now a days are offering cm level accurate solutions using RF signals. The conventional wireless nodes usually implement synchronization...

Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware

Steve Maslen October 10, 2017
Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with  application  examples will be maintained on the project website. 

Online DSP Classes: Why Such a High Dropout Rate?

Rick Lyons October 7, 201718 comments

Last year the IEEE Signal Processing Magazine published a lengthy article describing three university-sponsored online digital signal processing (DSP) courses [1]. The article detailed all the effort the professors expended in creating those courses and the courses' perceived values to students. 

However, one fact that struck me as important, but not thoroughly addressed in the article, was the shocking dropout rate of those online courses. For two of the courses the article's...

Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT

Cedron Dawg October 4, 20179 comments

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the frequency of a real tone in a DFT. This time it is a two bin version. The approach taken is a vector based one similar to the approach used in "Three Bin Exact Frequency Formulas for a Pure Complex Tone in a DFT"[1]. The real valued formula presented in this article actually preceded, and was the basis for the complex three bin...

Errata for the book: 'Understanding Digital Signal Processing'

Rick Lyons October 4, 20179 comments
Errata 3rd Ed. International Version.pdfErrata 3rd Ed. International Version.pdf

This blog post provides, in one place, the errata for each of the many different Editions/Printings of my book Understanding Digital Signal Processing.

If you would like the errata for your copy of the book, merely scroll down and click on the appropriate red line below. For the American versions of the various Editions of the book you'll need to know the "Printing Number" of your copy of the...

Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved

Rick Lyons November 23, 20129 comments

This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.

Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...

Data Types for Control & DSP

Tim Wescott April 26, 20166 comments

There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.

I recently posted an entry on PID control. In that article I glossed over the data types used by showing "double" in all of my example code.  Numerically, this should work for most control problems, but it can be an extravagant use of processor resources.  There ought to be a better way to determine what precision you need...

Compute the Frequency Response of a Multistage Decimator

Neil Robertson February 10, 20192 comments

Figure 1a shows the block diagram of a decimation-by-8 filter, consisting of a low-pass finite impulse response (FIR) filter followed by downsampling by 8 [1].  A more efficient version is shown in Figure 1b, which uses three cascaded decimate-by-two filters.  This implementation has the advantages that only FIR 1 is sampled at the highest sample rate, and the total number of filter taps is lower.

The frequency response of the single-stage decimator before downsampling is just...

Sensors Expo - Trip Report & My Best Video Yet!

Stephane Boucher August 3, 20183 comments

This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.  

Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip.  If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...

Compute Modulation Error Ratio (MER) for QAM

Neil Robertson November 5, 20192 comments

This post defines the Modulation Error Ratio (MER) for QAM signals, and shows how to compute it.  As we’ll see, in the absence of impairments other than noise, the MER tracks the signal’s Carrier-to-Noise Ratio (over a limited range).  A Matlab script at the end of the PDF version of this post computes MER for a simplified QAM-64 system.

Figure 1 is a simplified block diagram of a QAM system.  The transmitter includes a source of QAM symbols, a root-Nyquist...

Sampling bandpass signals

Josef Hoffmann June 26, 20215 comments
Sampling bandpass signals 1.1 Introduction

It is known [1], [3] that bandpass signals can be sampled with a sampling frequency which is lower than the sampling frequency according to the sampling theorem.

Fig. 1 shows an example of how the spectrum of a bandpass signal sampled with $f_s$ (Fig. 1a) arises in the baseband with $−f_s / 2 ≤ f < f_s/2$. The bandpass signal is assumed to have a center frequency $f_c = (f_{max} + f_{min})/2$ and bandwidth $\Delta f...

DSP Related Math: Nice Animated GIFs

Stephane Boucher April 24, 20143 comments

I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts.  I thought there would be some value in aggregating the DSP related gifs on one page.  

The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...

Fitting a Damped Sine Wave

Detlef Amberg July 3, 20155 comments

A damped sine wave is described by

$$ x_{(k)} = A \cdot e^{\alpha \cdot k} \cdot cos(\omega \cdot k + p)\tag{1}$$

with frequency $\omega$ , phase p , initial amplitude A and damping constant $\alpha$ . The $x_{(k)}$ are the samples of the function at equally spaced points in time.

With $x_{(k)}$ given, one often has to find the unknown parameters of the function. This can be achieved for instance with nonlinear approximation or with DFT – methods.

I present a method to find the...

New Comments System (please help me test it)

Stephane Boucher October 4, 201618 comments

I thought it would take me a day or two to implement, it took almost two weeks...

But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.  

Which means that:

  • You can easily add images, either by drag and drop or through the 'Insert Image' button
  • You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
  • You can add code snippets and they will be highlighted with highlights.js
  • You can edit...

Improved Narrowband Lowpass IIR Filters

Rick Lyons November 6, 20101 comment

Here's a neat IIR filter trick. It's excerpted from the "DSP Tricks" chapter of the new 3rd edition of my book "Understanding Digital Signal Processing". Perhaps this trick will be of some value to the subscribers of

Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response (IIR) filters are the fundamental building blocks in computationally-efficient high-order IIR digital filter implementations. However, when used in...