DSPRelated.com

Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Jason Sachs June 18, 20173 comments

Other articles in this series:

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...


Going back to Germany!

Stephane Boucher June 13, 20176 comments

A couple of blog posts ago, I wrote that the decision to go to ESC Boston ended up being a great one for many different reasons.  I came back from the conference energized and really happy that I went.  

These feelings were amplified a few days after my return when I received an email from Rolf Segger, the founder of SEGGER Microcontroller (check out their very new website), asking if I would be interested in visiting their headquarters...


Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

Cedron Dawg June 11, 20174 comments
Introduction

This is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.

A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...


Modeling a Continuous-Time System with Matlab

Neil Robertson June 6, 20172 comments

Many of us are familiar with modeling a continuous-time system in the frequency domain using its transfer function H(s) or H(jω).  However, finding the time response can be challenging, and traditionally involves finding the inverse Laplace transform of H(s).  An alternative way to get both time and frequency responses is to transform H(s) to a discrete-time system H(z) using the impulse-invariant transform [1,2].  This method provides an exact match to the continuous-time...


ESC Boston's Videos are Now Up

Stephane Boucher June 5, 2017

In my last blog, I told you about my experience at ESC Boston and the few videos that I was planning to produce and publish.  Here they are, please have a look and any feedback (positive or negative) is appreciated. 

Short Highlight

This is a very short (one minute) montage of some of the footage that I shot at the show & conference.  In future shows, I absolutely need to insert clips here and there of engineers saying a few words about the conference (why they...


How to Find a Fast Floating-Point atan2 Approximation

Nic Taylor May 26, 201716 comments
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:

$$ atan(z) \approx \dfrac{z}{1.0 +...


Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

Cedron Dawg May 12, 2017
Introduction

This is an article that is a another digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). Although it is not as far off as the last blog article.

A new family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. They are a generalization of Equation (1) from Rick Lyons' recent blog article titled "Sinusoidal Frequency Estimation Based on Time-Domain Samples"[1]. ...


Back from ESC Boston

Stephane Boucher May 6, 20172 comments

NOT going to ESC Boston would have allowed me to stay home, in my comfort zone.

NOT going to ESC Boston would have saved me from driving in the absolutely horrible & stressful Boston traffic1.

NOT going to ESC Boston would have saved me from having to go through a full search & questioning session at the Canada Customs on my return2.

2017/06/06 update: Videos are now up!

So two days...


A Beginner's Guide to OFDM

Qasim Chaudhari May 1, 20176 comments

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system. 

The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can...


A Recipe for a Common Logarithm Table

Cedron Dawg April 29, 2017
Introduction

This is an article that is a digression from trying to give a better understanding to the Discrete Fourier Transform (DFT).

A method for building a table of Base 10 Logarithms, also known as Common Logarithms, is featured using math that can be done with paper and pencil. The reader is assumed to have some familiarity with logarithm functions. This material has no dependency on the material in my previous blog articles.

If you were ever curious about how...


ADC Clock Jitter Model, Part 2 – Random Jitter

Neil Robertson April 22, 20189 comments

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter.  Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered Gaussian sequence as the jitter source.  What we are calling jitter can also be called time jitter, phase jitter, or phase noise.  It’s all the same phenomenon.  Typically, we call it jitter when we have a time-domain representation,...


DFT Bin Value Formulas for Pure Real Tones

Cedron Dawg April 17, 20151 comment
Introduction

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an analytical formula for the DFT of pure real tones. The formula is used to explain the well known properties of the DFT. A sample program is included, with its output, to numerically demonstrate the veracity of the formula. This article builds on the ideas developed in my previous two blog articles:


Computing Chebyshev Window Sequences

Rick Lyons January 8, 200811 comments

Chebyshev windows (also called Dolph-Chebyshev, or Tchebyschev windows), have several useful properties. Those windows, unlike the fixed Hanning, Hamming, or Blackman window functions, have adjustable sidelobe levels. For a given user-defined sidelobe level and window sequence length, Chebyshev windows yield the most narrow mainlobe compared to any fixed window functions.

However, for some reason, detailed descriptions of how to compute Chebyshev window sequences are not readily available...


Launch of Youtube Channel: My First Videos - Embedded World 2017

Stephane Boucher April 5, 201721 comments

I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience.  I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.

So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch.  Trade shows are...


Matlab Code to Synthesize Multiplierless FIR Filters

Neil Robertson October 31, 20163 comments

This article presents Matlab code to synthesize multiplierless Finite Impulse Response (FIR) lowpass filters.

A filter coefficient can be represented as a sum of powers of 2.  For example, if a coefficient = decimal 5 multiplies input x, the output is $y= 2^2*x + 2^0*x$.  The factor of $2^2$ is then implemented with a shift of 2 bits.  This method is not efficient for coefficients having a lot of 1’s, e.g. decimal 31 = 11111.  To reduce the number of non-zero...


Linear Feedback Shift Registers for the Uninitiated, Part XIII: System Identification

Jason Sachs March 12, 20181 comment

Last time we looked at spread-spectrum techniques using the output bit sequence of an LFSR as a pseudorandom bit sequence (PRBS). The main benefit we explored was increasing signal-to-noise ratio (SNR) relative to other disturbance signals in a communication system.

This time we’re going to use a PRBS from LFSR output to do something completely different: system identification. We’ll show two different methods of active system identification, one using sine waves and the other...


Embedded World 2018 - More Videos!

Stephane Boucher March 27, 20181 comment

After the interview videos last week, this week I am very happy to release two more videos taken at Embedded World 2018 and that I am proud of.  

For both videos, I made extensive use of my two new toys, a Zhiyun Crane Gimbal and a Sony a6300 camera.

The use of a gimbal like the Zhiyun makes a big difference in terms of making the footage look much more stable and cinematographic.

As for the Sony camera, it takes fantastic slow-motion footage and...


Multimedia Processing with FFMPEG

Karthick Kumaran A S V November 16, 2015

FFMPEG is a set of libraries and a command line tool for encoding and decoding audio and video in many different formats. It is a free software project for manipulating/processing multimedia data. Many open source media players are based on FFMPEG libraries.


Errata for the book: 'Understanding Digital Signal Processing'

Rick Lyons October 4, 20179 comments
Errata 3rd Ed. International Version.pdfErrata 3rd Ed. International Version.pdf

This blog post provides, in one place, the errata for each of the many different Editions/Printings of my book Understanding Digital Signal Processing.

If you would like the errata for your copy of the book, merely scroll down and click on the appropriate red line below. For the American versions of the various Editions of the book you'll need to know the "Printing Number" of your copy of the...


Multiplierless Exponential Averaging

Rick Lyons December 5, 200811 comments

This blog discusses an interesting approach to exponential averaging. To begin my story, a traditional exponential averager (also called a "leaky integrator"), shown in Figure 1(a), is commonly used to reduce noise fluctuations that contaminate relatively constant-amplitude signal measurements.

Figure 1 Exponential averaging: (a) standard network; (b) single-multiply network.

That exponential averager's difference equation is

y(n) = αx(n) + (1 –...