DSPRelated.com
The 2025 DSP Online Conference

Embedded World 2018 - More Videos!

Stephane Boucher March 27, 20181 comment

After the interview videos last week, this week I am very happy to release two more videos taken at Embedded World 2018 and that I am proud of.  

For both videos, I made extensive use of my two new toys, a Zhiyun Crane Gimbal and a Sony a6300 camera.

The use of a gimbal like the Zhiyun makes a big difference in terms of making the footage look much more stable and cinematographic.

As for the Sony camera, it takes fantastic slow-motion footage and...


Phase or Frequency Shifter Using a Hilbert Transformer

Neil Robertson March 25, 201821 comments

In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter.  In either case, the input is a real signal and the output is a real signal.  We’ll use some simple Matlab code to simulate these systems.  After that, we’ll go into a little more detail on Hilbert transformer theory and design. 

Phase Shifter

A conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...


Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed

Steve Maslen March 21, 2018

This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.

Additional design...

Embedded World 2018 - The Interviews

Stephane Boucher March 21, 2018

Once again this year, I had the chance to go to Embedded World in Nuremberg Germany.  And once again this year, I brought my video equipment to try and capture some of the most interesting things at the show.  

Something new this year, I asked Jacob Beningo if he would partner with me in doing interviews with a few vendors.  I would operate the camera while Jacob would ask the right questions to the vendors to make them talk about the key products/features that...


Phase and Amplitude Calculation for a Pure Complex Tone in a DFT using Multiple Bins

Cedron Dawg March 14, 201812 comments
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from several DFT bin values and knowing the frequency. This article is functionally an extension of my prior article "Phase and Amplitude Calculation for a Pure Complex Tone in a DFT"[1] which used only one bin for a complex tone, but it is actually much more similar to my approach for real...


Linear Feedback Shift Registers for the Uninitiated, Part XIII: System Identification

Jason Sachs March 12, 20181 comment

Last time we looked at spread-spectrum techniques using the output bit sequence of an LFSR as a pseudorandom bit sequence (PRBS). The main benefit we explored was increasing signal-to-noise ratio (SNR) relative to other disturbance signals in a communication system.

This time we’re going to use a PRBS from LFSR output to do something completely different: system identification. We’ll show two different methods of active system identification, one using sine waves and the other...


Coefficients of Cascaded Discrete-Time Systems

Neil Robertson March 4, 2018

In this article, we’ll show how to compute the coefficients that result when you cascade discrete-time systems.  With the coefficients in hand, it’s then easy to compute the time or frequency response.  The computation presented here can also be used to find coefficients of mixed discrete-time and continuous-time systems, by using a discrete time model of the continuous-time portion [1].

This article is available in PDF format for...


Design IIR Filters Using Cascaded Biquads

Neil Robertson February 11, 201828 comments

This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads.  We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix.  Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc).  As we’ll see, the cascaded-biquad design is less sensitive to coefficient...


Design IIR Highpass Filters

Neil Robertson February 3, 20182 comments

This post is the fourth in a series of tutorials on IIR Butterworth filter design.  So far we covered lowpass [1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters.  The general approach, as before, has six steps:

Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the analog highpass filter (pre-warping). Transform the...

Design IIR Band-Reject Filters

Neil Robertson January 17, 20182 comments

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis.  Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters.  Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies.   I’ll discuss the differences between the two approaches later in this...


DFT Graphical Interpretation: Centroids of Weighted Roots of Unity

Cedron Dawg April 10, 20151 comment
Introduction

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...


DFT Bin Value Formulas for Pure Real Tones

Cedron Dawg April 17, 20151 comment
Introduction

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an analytical formula for the DFT of pure real tones. The formula is used to explain the well known properties of the DFT. A sample program is included, with its output, to numerically demonstrate the veracity of the formula. This article builds on the ideas developed in my previous two blog articles:


Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved

Rick Lyons November 23, 20127 comments

This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.

Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...


Launch of Youtube Channel: My First Videos - Embedded World 2017

Stephane Boucher April 5, 201721 comments

I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience.  I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.

So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch.  Trade shows are...


Time-Domain Periodicity and the Discrete Fourier Transform

Eric Jacobsen July 13, 2012

Introduction

The Discrete Fourier Transform (DFT) and it's fast-algorithm implementation, the Fast Fourier Transform (FFT), are fundamental tools for processing and analysis of digital signals. While the continuous Fourier Transform and its inverse integrate over all time from minus infinity to plus infinity, and all frequencies from minus infinity to plus infinity, practical application of its discrete cousins can only be made over finite time and frequency intervals. The discrete nature...


Frequency Translation by Way of Lowpass FIR Filtering

Rick Lyons February 4, 20175 comments

Some weeks ago a question appeared on the dsp.related Forum regarding the notion of translating a signal down in frequency and lowpass filtering in a single operation [1]. It is possible to implement such a process by embedding a discrete cosine sequence's values within the coefficients of a traditional lowpass FIR filter. I first learned about this process from Reference [2]. Here's the story.

Traditional Frequency Translation Prior To Filtering

Think about the process shown in...


Some Observations on Comparing Efficiency in Communication Systems

Eric Jacobsen March 17, 2011
Introduction

Engineering is usually about managing efficiencies of one sort or another. One of my favorite working definitions of an engineer says, "An engineer is somebody who can do for a nickel what any damn fool can do for a dollar." In that case, the implication is that the cost is one of the characteristics being optimized. But cost isn't always the main efficiency metric, or at least the only one. Consider how a common transportation appliance, the automobile, is optimized...


Benford's law solved with DSP

Steve Smith February 22, 20087 comments

I have a longtime interest in the mystery of 1/f noise. A few years ago I came across Benford’s law, another puzzle that seemed to have many of the same characteristics.

Suppose you collect a large group of seemingly random numbers, such as might appear in a newspaper or financial report. Benford’s law relates to the leading digit of each number, such as "4" in 4.268, "3" in 0.0312, and "9" in -932.34. Since there are nine possible leading digits...


Is It True That j is Equal to the Square Root of -1 ?

Rick Lyons September 16, 20136 comments

A few days ago, on the YouTube.com web site, I watched an interesting video concerning complex numbers and the j operator. The video's author claimed that the statement "j is equal to the square root of negative one" is incorrect. What he said was:

He justified his claim by going through the following exercise, starting with:

Based on the algebraic identity:

the author rewrites Eq. (1) as:

If we assume

Eq. (3) can be rewritten...


The Swiss Army Knife of Digital Networks

Rick Lyons June 13, 201612 comments

This blog describes a general discrete-signal network that appears, in various forms, inside so many DSP applications. 

Figure 1 shows how the network's structure has the distinct look of a digital filter—a comb filter followed by a 2nd-order recursive network. However, I do not call this useful network a filter because its capabilities extend far beyond simple filtering. Through a series of examples I've illustrated the fundamental strength of this Swiss Army Knife of digital networks...


The 2025 DSP Online Conference