Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock
Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA. This situation is shown in Figure 1. Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2. This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1]. In that PLL, we...
Project introduction: Digital Filter Blocks in MyHDL and their integration in pyFDA
Hi everyone! After a lot of hesitation and several failed attempts, I have finally entered the world of blogging. A little about myself : My name is Sriyash Caculo and I’m a third year undergrad student at BITS Pilani K.K. Birla Goa Campus pursuing a major in Electronics and Instrumentation engineering. Being an electronics engineer, I developed an interest in Digital Signal Processing and its implementation on hardware.
This blog-post is the first of many to come for the...
Two Easy Ways To Test Multistage CIC Decimation Filters
This blog presents two very easy ways to test the performance of multistage cascaded integrator-comb (CIC) decimation filters [1]. Anyone implementing CIC filters should take note of the following proposed CIC filter test methods.
Introduction
Figure 1 presents a multistage decimate by D CIC filter where the number of stages is S = 3. The '↓D' operation represents downsampling by integer D (discard all but every Dth sample), n is the input time index, and m is the output time index.
ADC Clock Jitter Model, Part 2 – Random Jitter
In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter. Now we’ll investigate an ADC with random clock jitter, by using a filtered or unfiltered Gaussian sequence as the jitter source. What we are calling jitter can also be called time jitter, phase jitter, or phase noise. It’s all the same phenomenon. Typically, we call it jitter when we have a time-domain representation,...
Take Control of Noise with Spectral Averaging
Most engineers have seen the moment-to-moment fluctuations that are common with instantaneous measurements of a supposedly steady spectrum. You can see these fluctuations in magnitude and phase for each frequency bin of your spectrogram. Although major variations are certainly reason for concern, recall that we don’t live in an ideal, noise-free world. After verifying the integrity of your measurement setup by checking connections, sensors, wiring, and the like, you might conclude that the...
Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes
Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.
This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...
FFT Interpolation Based on FFT Samples: A Detective Story With a Surprise Ending
This blog presents several interesting things I recently learned regarding the estimation of a spectral value located at a frequency lying between previously computed FFT spectral samples. My curiosity about this FFT interpolation process was triggered by reading a spectrum analysis paper written by three astronomers [1].
My fixation on one equation in that paper led to the creation of this blog.
Background
The notion of FFT interpolation is straightforward to describe. That is, for example,...
ADC Clock Jitter Model, Part 1 – Deterministic Jitter
Analog to digital converters (ADC’s) have several imperfections that affect communications signals, including thermal noise, differential nonlinearity, and sample clock jitter [1, 2]. As shown in Figure 1, the ADC has a sample/hold function that is clocked by a sample clock. Jitter on the sample clock causes the sampling instants to vary from the ideal sample time. This transfers the jitter from the sample clock to the input signal.
In this article, I present a Matlab...
Crowdfunding Articles?
Many of you have the knowledge and talent to write technical articles that would benefit the EE community. What is missing for most of you though, and very understandably so, is the time and motivation to do it.
But what if you could make some money to compensate for your time spent on writing the article(s)? Would some of you find the motivation and make the time?
I am thinking of implementing a system/mechanism that would allow the EE community to...
How precise is my measurement?
Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.
An accurate, precise...Computing Large DFTs Using Small FFTs
It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.
The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...
A Fast Guaranteed-Stable Sliding DFT Algorithm
This blog presents a most computationally-efficient guaranteed-stable real-time sliding discrete Fourier transform (SDFT) algorithm. The phrase “real-time” means the network computes one spectral output sample, equal to a single-bin output of an N‑point discrete Fourier transform (DFT), for each input signal sample.
Proposed Guaranteed Stable SDFT
My proposed guaranteed stable SDFT, whose development is given in [1], is shown in Figure 1(a). The output sequence Xk(n) is an N-point...
The DFT Magnitude of a Real-valued Cosine Sequence
This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.
To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...
An s-Plane to z-Plane Mapping Example
While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.
Reader, please take a few moments to see if you detect any errors in Figure 1.
...Why Time-Domain Zero Stuffing Produces Multiple Frequency-Domain Spectral Images
This blog explains why, in the process of time-domain interpolation (sample rate increase), zero stuffing a time sequence with zero-valued samples produces an increased-length time sequence whose spectrum contains replications of the original time sequence's spectrum.
Background
The traditional way to interpolate (sample rate increase) an x(n) time domain sequence is shown in Figure 1.
Figure 1
The '↑ L' operation in Figure 1 means to...
Linear Feedback Shift Registers for the Uninitiated, Part XIII: System Identification
Last time we looked at spread-spectrum techniques using the output bit sequence of an LFSR as a pseudorandom bit sequence (PRBS). The main benefit we explored was increasing signal-to-noise ratio (SNR) relative to other disturbance signals in a communication system.
This time we’re going to use a PRBS from LFSR output to do something completely different: system identification. We’ll show two different methods of active system identification, one using sine waves and the other...
Design IIR Highpass Filters
This post is the fourth in a series of tutorials on IIR Butterworth filter design. So far we covered lowpass [1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters. The general approach, as before, has six steps:
Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the analog highpass filter (pre-warping). Transform the...Time-Domain Periodicity and the Discrete Fourier Transform
Introduction
The Discrete Fourier Transform (DFT) and it's fast-algorithm implementation, the Fast Fourier Transform (FFT), are fundamental tools for processing and analysis of digital signals. While the continuous Fourier Transform and its inverse integrate over all time from minus infinity to plus infinity, and all frequencies from minus infinity to plus infinity, practical application of its discrete cousins can only be made over finite time and frequency intervals. The discrete nature...
Design a DAC sinx/x Corrector
This post provides a Matlab function that designs linear-phase FIR sinx/x correctors. It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.
A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process. In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses. These are converted by the DAC into contiguous pulses...
An Efficient Linear Interpolation Scheme
This blog presents a computationally-efficient linear interpolation trick that requires at most one multiply per output sample.
Background: Linear Interpolation
Looking at Figure 1(a) let's assume we have two points, [x(0),y(0)] and [x(1),y(1)], and we want to compute the value y, on the line joining those two points, associated with the value x.
Figure 1: Linear interpolation: given x, x(0), x(1), y(0), and y(1), compute the value of y. ...
New Comments System (please help me test it)
I thought it would take me a day or two to implement, it took almost two weeks...
But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.
Which means that:
- You can easily add images, either by drag and drop or through the 'Insert Image' button
- You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
- You can add code snippets and they will be highlighted with highlights.js
- You can edit...
The Discrete Fourier Transform and the Need for Window Functions
The Discrete Fourier Transform (DFT) is used to find the frequency spectrum of a discrete-time signal. A computationally efficient version called the Fast Fourier Transform (FFT) is normally used to calculate the DFT. But, as many have found to their dismay, the FFT, when used alone, usually does not provide an accurate spectrum. The reason is a phenomenon called spectral leakage.
Spectral leakage can be reduced drastically by using a window function in conjunction...
Amplitude modulation and the sampling theorem
I am working on the 11th and probably final chapter of Think DSP, which follows material my colleague Siddhartan Govindasamy developed for a class at Olin College. He introduces amplitude modulation as a clever way to sneak up on the Nyquist–Shannon sampling theorem.
Most of the code for the chapter is done: you can check it out in this IPython notebook. I haven't written the text yet, but I'll outline it here, and paste in the key figures.
Convolution...
Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes
Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.
This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...
Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction
Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.
This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.
Ernie, You Have a Banana in Your EarI have had a really really tough time writing this article. I like the...
Sensors Expo - Trip Report & My Best Video Yet!
This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.
Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip. If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...
Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals
Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:
- the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
- the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream
The unusually-good correlation properties...
Finally got a drone!
As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process. When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video). Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...
Design study: 1:64 interpolating pulse shaping FIR
This article is the documentation to a code snippet that originated from a discussion on comp.dsp.
The task is to design a root-raised cosine filter with a rolloff of a=0.15 that interpolates to 64x the symbol rate at the input.
The code snippet shows a solution that is relatively straightforward to design and achieves reasonably good efficiency using only FIR filters.
Motivation: “simple solutions?”Design IIR Band-Reject Filters
In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters. Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies. I’ll discuss the differences between the two approaches later in this...
















