DSPRelated.com

Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals

Jason Sachs December 29, 20171 comment

Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:

  • the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
  • the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream

The unusually-good correlation properties...


An Efficient Linear Interpolation Scheme

Rick Lyons December 27, 201725 comments

This blog presents a computationally-efficient linear interpolation trick that requires at most one multiply per output sample.

Background: Linear Interpolation

Looking at Figure 1(a) let's assume we have two points, [x(0),y(0)] and [x(1),y(1)], and we want to compute the value y, on the line joining those two points, associated with the value x. 

       Figure 1: Linear interpolation: given x, x(0), x(1), y(0), and y(1), compute the value of y. ...


An Alternative Form of the Pure Real Tone DFT Bin Value Formula

Cedron Dawg December 17, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving alternative exact formulas for the bin values of a real tone in a DFT. The derivation of the source equations can be found in my earlier blog article titled "DFT Bin Value Formulas for Pure Real Tones"[1]. The new form is slighty more complicated and calculation intensive, but it is more computationally accurate in the vicinity of near integer frequencies. This...


Design IIR Butterworth Filters Using 12 Lines of Code

Neil Robertson December 10, 201712 comments

While there are plenty of canned functions to design Butterworth IIR filters [1], it’s instructive and not that complicated to design them from scratch.  You can do it in 12 lines of Matlab code.  In this article, we’ll create a Matlab function butter_synth.m to design lowpass Butterworth filters of any order.  Here is an example function call for a 5th order filter:

N= 5 % Filter order fc= 10; % Hz cutoff freq fs= 100; % Hz sample freq [b,a]=...

Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.

Steve Maslen December 3, 20177 comments

This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.

  • Part 6: Self-Calibration, Measurements and Signalling (this part)
  • Part 5:

Simplest Calculation of Half-band Filter Coefficients

Neil Robertson November 20, 20179 comments

Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4  [1]*.  And it so happens that almost half of the coefficients are zero.  The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2.  Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.

Here we will compute half-band...


Feedback Controllers - Making Hardware with Firmware. Part 5. Some FPGA Aspects.

Steve Maslen November 14, 2017
This part of the on-going series of articles looks at a variety of aspects concerning the FPGA device which provides the high-speed maths capability for the low-latency controller and the arbitrary circuit generator application. In due course a complete specification along with  application  examples will be maintained on the project website here.

Improved Three Bin Exact Frequency Formula for a Pure Real Tone in a DFT

Cedron Dawg November 6, 2017
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by extending the exact two bin formulas for the frequency of a real tone in a DFT to the three bin case. This article is a direct extension of my prior article "Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT"[1]. The formulas derived in the previous article are also presented in this article in the computational order, rather than the indirect order they were...


There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle

Neil Robertson October 23, 20179 comments
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane.  I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way.  I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix. 

This post is available in PDF format for easy...


There and Back Again: Time of Flight Ranging between Two Wireless Nodes

Qasim Chaudhari October 23, 20175 comments

With the growth in the Internet of Things (IoT) products, the number of applications requiring an estimate of range between two wireless nodes in indoor channels is growing very quickly as well. Therefore, localization is becoming a red hot market today and will remain so in the coming years.

One question that is perplexing is that many companies now a days are offering cm level accurate solutions using RF signals. The conventional wireless nodes usually implement synchronization...


Compute the Frequency Response of a Multistage Decimator

Neil Robertson February 10, 20192 comments

Figure 1a shows the block diagram of a decimation-by-8 filter, consisting of a low-pass finite impulse response (FIR) filter followed by downsampling by 8 [1].  A more efficient version is shown in Figure 1b, which uses three cascaded decimate-by-two filters.  This implementation has the advantages that only FIR 1 is sampled at the highest sample rate, and the total number of filter taps is lower.

The frequency response of the single-stage decimator before downsampling is just...


Multiplying Two Binary Numbers

Rick Lyons March 16, 20117 comments

I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.

Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...


Differentiating and integrating discrete signals

Allen Downey December 14, 20152 comments

I am back at work on Think DSP, adding a new chapter on differentiation and integration.  In the previous chapter (which you can read here) I present Gaussian smoothing, show how smoothing in the time domain corresponds to a low-pass filter in the frequency domain, and present the Convolution Theorem.

In the current chapter, I start with the first difference operation (diff in Numpy) and show that it corresponds to a high-pass filter in the frequency domain.  I use historical stock...


Data Types for Control & DSP

Tim Wescott April 26, 20166 comments

There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.

I recently posted an entry on PID control. In that article I glossed over the data types used by showing "double" in all of my example code.  Numerically, this should work for most control problems, but it can be an extravagant use of processor resources.  There ought to be a better way to determine what precision you need...


Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved

Rick Lyons November 23, 20129 comments

This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.

Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...


Sensors Expo - Trip Report & My Best Video Yet!

Stephane Boucher August 3, 20183 comments

This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.  

Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip.  If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...


Fitting a Damped Sine Wave

Detlef Amberg July 3, 20155 comments

A damped sine wave is described by

$$ x_{(k)} = A \cdot e^{\alpha \cdot k} \cdot cos(\omega \cdot k + p)\tag{1}$$

with frequency $\omega$ , phase p , initial amplitude A and damping constant $\alpha$ . The $x_{(k)}$ are the samples of the function at equally spaced points in time.

With $x_{(k)}$ given, one often has to find the unknown parameters of the function. This can be achieved for instance with nonlinear approximation or with DFT – methods.

I present a method to find the...


DSP Related Math: Nice Animated GIFs

Stephane Boucher April 24, 20143 comments

I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts.  I thought there would be some value in aggregating the DSP related gifs on one page.  

The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...

New Comments System (please help me test it)

Stephane Boucher October 4, 201618 comments

I thought it would take me a day or two to implement, it took almost two weeks...

But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.  

Which means that:

  • You can easily add images, either by drag and drop or through the 'Insert Image' button
  • You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
  • You can add code snippets and they will be highlighted with highlights.js
  • You can edit...

A Narrow Bandpass Filter in Octave or Matlab

Paul Lovell June 1, 20206 comments

The design of a very narrow bandpass FIR filter, coded in either Octave or Matlab, can prove challenging if a computationally-efficient  filter is required. This is especially true if the sampling rate is high relative to the filter's center frequency. The most obvious filter design methods, using either window-based or Remez ( Parks-McClellan ) functions, can easily result in filters with many thousands of taps. 

The filter to be described reduces the computational effort (and thus...