DSPRelated.com

Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects

Steve Maslen September 9, 2017
Some Design and Simulation Considerations for Sampled-Data Controllers

This article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.


Finally got a drone!

Stephane Boucher August 28, 20172 comments

As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process.  When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video).  Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...


Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples

Steve Maslen August 24, 2017
Developing and Validating Simulation Models

This article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.


Feedback Controllers - Making Hardware with Firmware. Part I. Introduction

Steve Maslen August 22, 2017
Introduction to the topic 

This is the 1st in a series of articles looking at how we can use DSP and Feedback Control Sciences along with some mixed-signal electronics and number-crunching capability (e.g. FPGA), to create arbitrary (within reason) Electrical/Electronic Circuits with real-world connectivity. Of equal importance will be the evaluation of the functionality and performance of a practical design made from modestly-priced state of the art devices.

  • Part 1: 

Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

Cedron Dawg July 20, 2017
Introduction

This is an article that is the last of my digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is along the lines of the last two.

In those articles, I presented exact formulas for calculating the frequency of a pure tone signal as instantaneously as possible in the time domain. Although the formulas work for both real and complex signals (something that does not happen with frequency domain formulas), for real signals they...


SEGGER's 25th Anniversary Video

Stephane Boucher July 18, 20172 comments

Chances are you will find this video more interesting to watch if you take five minutes to first read the story of the week I spent at SEGGER's headquarters at the end of June.  

The video is only a little more than 2 minutes long.  If you decide to watch it, make sure to go full screen and I would really love to read your thoughts about it in the comments down bellow.  Do you think a video like this succeeds in making the viewer want to learn more about the company?...


Above-Average Smoothing of Impulsive Noise

Rick Lyons July 10, 201724 comments

In this blog I show a neat noise reduction scheme that has the high-frequency noise reduction behavior of a traditional moving average process but with much better impulsive-noise suppression.

In practice we may be required to make precise measurements in the presence of highly-impulsive noise. Without some sort of analog signal conditioning, or digital signal processing, it can be difficult to obtain stable and repeatable, measurements. This impulsive-noise smoothing trick,...


Went 280km/h (174mph) in a Porsche Panamera in Germany!

Stephane Boucher July 10, 201712 comments

Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos.  It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.  


Looking For a Second Toolbox? This One's For Sale

Rick Lyons June 29, 2017
In case you're looking for a second toolbox, this used toolbox is for sale.

The blue-enameled steel toolbox measures 13 x 7 x 5 inches and, when opened, has a three-section tray attached to the lid. Showing signs of heavy use, the interior, tray, and exterior have collected a fair amount of dirt and grease and bear many scratches. The bottom of the box is worn from having been slid on rough surfaces. 

The toolbox currently resides in Italy. But don't worry, it can be shipped to you....


Embedded Toolbox: Programmer's Calculator

Miro Samek June 27, 20178 comments

Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.

I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...


DFT Graphical Interpretation: Centroids of Weighted Roots of Unity

Cedron Dawg April 10, 20151 comment
Introduction

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...


5G NR QC-LDPC Encoding Algorithm

Lyons Zhang September 10, 20192 comments

3GPP 5G has been focused on structured LDPC codes known as quasi-cyclic low-density parity-check (QC-LDPC) codes, which exhibit advantages over other types of LDPC codes with respect to the hardware implementations of encoding and decoding using simple shift registers and logic circuits.  

5G NR QC-LDPC  Circulant Permutation Matrix

A circular permutation matrix ${\bf I}(P_{i,j})$ of size $Z_c \times Z_c$ is obtained by circularly shifting the identity matrix $\bf I$ of...


Two Easy Ways To Test Multistage CIC Decimation Filters

Rick Lyons May 22, 20182 comments

This blog presents two very easy ways to test the performance of multistage cascaded integrator-comb (CIC) decimation filters [1]. Anyone implementing CIC filters should take note of the following proposed CIC filter test methods.

Introduction

Figure 1 presents a multistage decimate by D CIC filter where the number of stages is S = 3. The '↓D' operation represents downsampling by integer D (discard all but every Dth sample), n is the input time index, and m is the output time index.


Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes

Jason Sachs April 18, 2018

Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.

This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...


ADC Clock Jitter Model, Part 1 – Deterministic Jitter

Neil Robertson April 16, 201819 comments

Analog to digital converters (ADC’s) have several imperfections that affect communications signals, including thermal noise, differential nonlinearity, and sample clock jitter [1, 2].  As shown in Figure 1, the ADC has a sample/hold function that is clocked by a sample clock.  Jitter on the sample clock causes the sampling instants to vary from the ideal sample time.  This transfers the jitter from the sample clock to the input signal.

In this article, I present a Matlab...


How Not to Reduce DFT Leakage

Rick Lyons May 23, 201211 comments

This blog describes a technique to reduce the effects of spectral leakage when using the discrete Fourier transform (DFT).

In late April 2012 there was a thread on the comp.dsp newsgroup discussing ways to reduce the spectral leakage problem encountered when using the DFT. One post in that thread caught my eye [1]. That post referred to a website presenting a paper describing a DFT leakage method that I'd never heard of before [2]. (Of course, not that I've heard...


Embedded World 2018 - The Interviews

Stephane Boucher March 21, 2018

Once again this year, I had the chance to go to Embedded World in Nuremberg Germany.  And once again this year, I brought my video equipment to try and capture some of the most interesting things at the show.  

Something new this year, I asked Jacob Beningo if he would partner with me in doing interviews with a few vendors.  I would operate the camera while Jacob would ask the right questions to the vendors to make them talk about the key products/features that...


Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals

Jason Sachs December 29, 20171 comment

Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:

  • the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
  • the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream

The unusually-good correlation properties...


Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction

Jason Sachs June 12, 2018

Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.

This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.

Ernie, You Have a Banana in Your Ear

I have had a really really tough time writing this article. I like the...


Part 11. Using -ve Latency DSP to Cancel Unwanted Delays in Sampled-Data Filters/Controllers

Steve Maslen June 18, 201918 comments
This final article in the series will look at -ve latency DSP and how it can be used to cancel the unwanted delays in sampled-data systems due to such factors as Nyquist filtering, ADC acquisition, DSP/FPGA algorithm computation time, DAC reconstruction and circuit propagation delays.

Some applications demand zero-latency or zero unwanted latency signal processing. Negative latency DSP may sound like the stuff of science fiction or broken physics but the arrangement as...