A Quadrature Signals Tutorial: Complex, But Not Complicated
Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...
Polyphase Filters and Filterbanks
ALONG CAME POLY
Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling filterbanks using the same theories.
This post will walk through a reference implementation of both the downsampling polyphase filter and a downsampling polyphase filterbank using scipy, numpy, matplotlib, and python. It should also highlight some of...
Beat Notes: An Interesting Observation
Some weeks ago a friend of mine, a long time radio engineer as well as a piano player, called and asked me,
"When I travel in a DC-9 aircraft, and I sit back near the engines, I hear this fairly loud unpleasant whump whump whump whump sound. The frequency of that sound is, maybe, two cycles per second. I think that sound is a beat frequency because the DC-9's engines are turning at a slightly different number of revolutions per second. My question is, what sort of mechanism in the airplane...
DSPRelated Finally on Twitter!
Hello!
It's been a while since you've heard from me - and there are many reasons why:
1 - I've made a clown of myself (video here)
2 - I've been working on unifying the user management system. You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info).
3- I've been working on getting up to speed with social networks and especially Twitter. I have resisted the idea for a while - at 40...
Using the DFT as a Filter: Correcting a Misconception
I have read, in some of the literature of DSP, that when the discrete Fourier transform (DFT) is used as a filter the process of performing a DFT causes an input signal's spectrum to be frequency translated down to zero Hz (DC). I can understand why someone might say that, but I challenge that statement as being incorrect. Here are my thoughts.
Using the DFT as a Filter It may seem strange to think of the DFT as being used as a filter but there are a number of applications where this is...
The Little Fruit Market: The Beginning of the Digital Explosion
There used to be a fruit market located at 391 San Antonio Road in Mountain View, California. In the 1990's I worked part time in Mountain View and drove past this market's building, shown in Figure 1, many times, unaware of its history. What happened at that fruit market has changed the lives of almost everyone on our planet. Here's the story.
William Shockley In 1948 the brilliant physicist William Shockley, along with John Bardeen and Walter Brattain, co-invented the transistor at Bell...
Noise shaping
eywords: Quantization noise; noise shaping
A brief introduction to noise shaping, with firm resolve not to miss the forest for the trees. We may still stumble over some assorted roots. Matlab example code is included.
QuantizationFig. 1 shows a digital signal that is reduced to a lower bit width, for example a 16 bit signal being sent to a 12 bit digital-to-analog converter. Rounding to the nearest output value is obviously the best that can be done to minimize the error of each...
Two jobs
For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.
edit - video of the event:
I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...
Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved
This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.
Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...
Setting the 3-dB Cutoff Frequency of an Exponential Averager
This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.
Figure 1 shows...
'z' as in 'Zorro': Frequency Masking FIR
An efficient way to implement FIR filters. Matlab / Octave example included. Keywords: Frequency masking FIR filter implementation
IntroductionAn "upsampled" FIR filter uses multiple-sample delays between the taps, compared to the unity delays in a conventional FIR filter. The resulting frequency response has steeper edges, but contains periodic images along the frequency axis (Fig. 1). Due to the latter, it is typically not too useful on its own.
Figure 1: Conventional and 'upsampled'...DSPRelated Finally on Twitter!
Hello!
It's been a while since you've heard from me - and there are many reasons why:
1 - I've made a clown of myself (video here)
2 - I've been working on unifying the user management system. You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info).
3- I've been working on getting up to speed with social networks and especially Twitter. I have resisted the idea for a while - at 40...
Constrained Integer Behavior
The wheels go round and round, round and round ...Integer arithmetic is ubiquitous in digital hardware implementations, it's prolific in the control and data-paths. When using fixed width (constrained) integers, overflow and underflow is business as usual.
Building with IntegersThe subtitle of this post mentions a wheel - before I get to the wheel I want to look at an example. The recursive-windowed-averager (rwa, a.k.a moving average)...
A Useful Source of Signal Processing Information
I just discovered a useful web-based source of signal processing information that was new to me. I thought I'd share what I learned with the subscribers here on DSPRelated.com.
The Home page of the web site that I found doesn't look at all like it would be useful to us DSP fanatics. But if you enter some signal processing topic of interest, say, "FM demodulation" (without the quotation marks) into the 'Search' box at the top of the web page
and click the red 'SEARCH...
New Video: Parametric Oscillations
I just posted this last night. It's kinda off-topic from the mission of the channel, but I realized that it had been months since I'd posted a video, and having an excuse to build on helped keep me on track.
Engineering the Statistics
Do you remember the probability course you took in undergrad? If you were like me, you would consider it one of those courses that you get out of confused. But maybe a time will come where you regret skipping class because of the lecturer's persisting attempts to scare you with mathematical involved nomenclature.As you might have guessed, I had this moment few months back where I had to go deep into statistical analysis. I learned things the hard way, or maybe it is the right way. I mean...
A Table of Digital Frequency Notation
When we read the literature of digital signal processing (DSP) we encounter a number of different, and equally valid, ways to algebraically represent the notion of frequency for discrete-time signals. (By frequency I mean a measure of angular repetitions per unit of time.)
The various mathematical expressions for sinusoidal signals use a number of different forms of a frequency variable and the units of measure (dimensions) of those variables are different. It's sometimes a nuisance to keep...
Specifying the Maximum Amplifier Noise When Driving an ADC
I recently learned an interesting rule of thumb regarding the use of an amplifier to drive the input of an analog to digital converter (ADC). The rule of thumb describes how to specify the maximum allowable noise power of the amplifier [1].
The Problem Here's the situation for an ADC whose maximum analog input voltage range is –VRef to +VRef. If we drive an ADC's analog input with an sine wave whose peak amplitude is VP = VRef, the ADC's output signal to noise ratio is maximized. We'll...
Implementing Simultaneous Digital Differentiation, Hilbert Transformation, and Half-Band Filtering
Recently I've been thinking about digital differentiator and Hilbert transformer implementations and I've developed a processing scheme that may be of interest to the readers here on dsprelated.com.
Autocorrelation and the case of the missing fundamental
[UPDATED January 25, 2016: One of the examples was broken, also the IPython notebook links now point to nbviewer, where you can hear the examples.]
For sounds with simple harmonic structure, the pitch we perceive is usually the fundamental frequency, even if it is not dominant. For example, here's the spectrum of a half-second recording of a saxophone.
The first three peaks are at 464, 928, and 1392 Hz. The pitch we perceive is the fundamental, 464 Hz, which is close to...
Correlation without pre-whitening is often misleading
White LiesCorrelation, as one of the first tools DSP users add to their tool box, can automate locating a known signal within a second (usually larger) signal. The expected result of a correlation is a nice sharp peak at the location of the known signal and few, if any, extraneous peaks.
A little thought will show this to be incorrect: correlating a signal with itself is only guaranteed to give a sharp peak if the signal's samples are uncorrelated --- for example if the signal is composed...
Weighted least-squares FIR with shared coefficients
FIR design with arbitrary routing between delay line and coefficient multipliers.
Includes a commented implementation of a generic IRLS FIR design algorithm.
Introduction: Reverse EngineeringWhile looking for numerical IIR filter optimization, a Matlab program in [1] for the design of FIR filters caught my attention. The equations looked familiar, sort of, but on closer examination the pieces refused to fit together. Without the references, it took about two evenings to sort out how it...
Filter a Rectangular Pulse with no Ringing
To filter a rectangular pulse without any ringing, there is only one requirement on the filter coefficients: they must all be positive. However, if we want the leading and trailing edge of the pulse to be symmetrical, then the coefficients must be symmetrical. What we are describing is basically a window function.
Consider a rectangular pulse 32 samples long with fs = 1 kHz. Here is the Matlab code to generate the pulse:
N= 64; fs= 1000; % Hz sample...Least-squares magic bullets? The Moore-Penrose Pseudoinverse
Hello,
the topic of this brief article is a tool that can be applied to a variety of problems: The Moore-Penrose Pseudoinverse.While maybe not exactly a magic bullet, it gives us least-squares optimal solutions, and that is under many circumstances the best we can reasonably expect.
I'll demonstrate its use on a short example. More details can be found for example on Wikipedia, or the Matlab documentation...
Constrained Integer Behavior
The wheels go round and round, round and round ...Integer arithmetic is ubiquitous in digital hardware implementations, it's prolific in the control and data-paths. When using fixed width (constrained) integers, overflow and underflow is business as usual.
Building with IntegersThe subtitle of this post mentions a wheel - before I get to the wheel I want to look at an example. The recursive-windowed-averager (rwa, a.k.a moving average)...
There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane. I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way. I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix.This post is available in PDF format for easy...
Simultaneously Computing a Forward FFT and an Inverse FFT Using a Single FFT
Most of us are familiar with the processes of using a single N-point complex FFT to: (1) perform a 2N-point FFT on real data, and (2) perform two independent N-point FFTs on real data [1–5]. In case it's of interest to someone out there, this blog gives the algorithm for simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT.
Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 1. In that figure, we compute the x(n) inverse FFT of...
Access to 50+ Sessions From the DSP Online Conference
In case you forget or didn't already know, registering for the 2023 DSP Online Conference automatically gives you 10 months of unlimited access to all sessions from previous editions of the conference. So for the price of an engineering book, you not only get access to the upcoming 2023 DSP Online Conference but also to hours upon hours of on-demand DSP gold from some of the best experts in the field.
The value you get for your small investment is simply huge. Many of the...
Simulink-Simulation of SSB demodulation
≥≥≥ Simulink-Simulation of SSB demodulation or modulation from the article “Understanding the ‘Phasing Method’ of Single Sideband Demodulation” by Richard Lyons Josef HoffmannThe article “Understanding the ‘Phasing Method’ of Single Sideband Demodulation” by Richard Lyons is a very good description of this topic. The block representation from the figures are clear and easy to understand. They are predestined for a simulation in Simulink. The simulation can help...
Interpolator Design: Get the Stopbands Right
In this article, I present a simple approach for designing interpolators that takes the guesswork out of determining the stopbands.