Multilayer Perceptrons and Event Classification with data from CODEC using Scilab and Weka
For my first blog, I thought I would introduce the reader to Scilab [1] and Weka [2]. In order to illustrate how they work, I will put together a script in Scilab that will sample using the microphone and CODEC on your PC and save the waveform as a CSV file.
Maximum Likelihood Estimation
Any observation has some degree of noise content that makes our observations uncertain. When we try to make conclusions based on noisy observations, we have to separate the dynamics of a signal from noise.
Approximating the area of a chirp by fitting a polynomial
Once in a while we need to estimate the area of a dataset in which we are interested. This area could give us, for example, force (mass vs acceleration) or electric power (electric current vs charge).
Deconvolution by least squares (Using the power of linear algebra in signal processing).
When we deal with our normal discrete signal processing operations, like FIR/IIR filtering, convolution, filter design, etc. we normally think of the signals as a constant stream of numbers that we put in a sequence
The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase
This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:
What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?I'll declare two things to convince you to continue reading.
Declaration# 1: "That the coefficients must be symmetrical" is not a correct
Phase and Amplitude Calculation for a Pure Real Tone in a DFT: Method 1
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the phase and amplitude of a non-integer frequency real tone in a DFT. The linearity of the Fourier Transform is exploited to reframe the problem as the equivalent of finding a set of coordinates in a specific vector space. The found coordinates are then used to calculate the phase and amplitude of the pure real tone in the DFT. This article...
Exact Frequency Formula for a Pure Real Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a major theoretical advance in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is...
DFT Bin Value Formulas for Pure Real Tones
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an analytical formula for the DFT of pure real tones. The formula is used to explain the well known properties of the DFT. A sample program is included, with its output, to numerically demonstrate the veracity of the formula. This article builds on the ideas developed in my previous two blog articles:
DFT Graphical Interpretation: Centroids of Weighted Roots of Unity
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...
The Exponential Nature of the Complex Unit Circle
IntroductionThis is an article to hopefully give an understanding to Euler's magnificent equation:
$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$
This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.
Complex...Resolving 'Can't initialize target CPU' on TI C6000 DSPs - Part 1
Introduction
Today I am going to discuss some of the basics that can help prevent errors that frustrate some users. The information is directed toward TI C6000 family DSPs, but much of it also applies to other TI DSPs. In many cases they represent the user's first involvement with using Code Composer Studio [CCS] and a target board. It has been my experience that the primary cause of the "Can't initialize target CPU" error message and similar messages like "Error connecting to...
Discrete Wavelet Transform Filter Bank Implementation (part 1)
UPDATE: Added graphs and code to explain the frequency division of the branches
The focus of this article is to briefly explain an implementation of this transform and several filter bank forms. Theoretical information about DWT can be found elsewhere.
First of all, a 'quick and dirty' simplified explanation of the differences between DFT and DWT:
The DWT (Discrete Wavelet Transform), simply put, is an operation that receives a signal as an input (a vector of data) and...
Design of an anti-aliasing filter for a DAC
Overview- Octaveforge / Matlab design script. Download: here
- weighted numerical optimization of Laplace-domain transfer function
- linear-phase design, optimizes vector error (magnitude and phase)
- design process calculates and corrects group delay internally
- includes sinc() response of the sample-and-hold stage in the ADC
- optionally includes multiplierless FIR filter
Digital-to-analog conversion connects digital...
Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)
IntroductionThis is an article that is a another digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). Although it is not as far off as the last blog article.
A new family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. They are a generalization of Equation (1) from Rick Lyons' recent blog article titled "Sinusoidal Frequency Estimation Based on Time-Domain Samples"[1]. ...
A Two Bin Solution
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by showing an implementation of how the parameters of a real pure tone can be calculated from just two DFT bin values. The equations from previous articles are used in tandem to first calculate the frequency, and then calculate the amplitude and phase of the tone. The approach works best when the tone is between the two DFT bins in terms of frequency.
The Coding...Fibonacci trick
I'm working on a video, tying the Fibonacci sequence into the general subject of difference equations.
Here's a fun trick: take any two consecutive numbers in the Fibonacci sequence, say 34 and 55. Now negate one and use them as the seed for the Fibonacci sequence, larger magnitude first, i.e.
$-55, 34, \cdots$
Carry it out, and you'll eventually get the Fibonacci sequence, or it's negative:
$-55, 34, -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1 \cdots$
This is NOT a general property of difference...
Python number crunching faster? Part I
Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this to be very useful in my work. Lately there has been some chatter on speeding up Python.
From another project I follow, MyHDL, I was introduced to the Python JIT compiler,
Should DSP Undergraduate Students Study z-Transform Regions of Convergence?
Not long ago I presented my 3-day DSP class to a group of engineers at Tektronix Inc. in Beaverton Oregon [1]. After I finished covering my material on IIR filters' z-plane pole locations and filter stability, one of the Tektronix engineers asked a question similar to:
"I noticed that you didn't discuss z-plane regions of convergence here. In my undergraduate DSP class we spent a lot of classroom and homework time on the ...
Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the frequency of a real tone in a DFT. This time it is a two bin version. The approach taken is a vector based one similar to the approach used in "Three Bin Exact Frequency Formulas for a Pure Complex Tone in a DFT"[1]. The real valued formula presented in this article actually preceded, and was the basis for the complex three bin...
Exploring Human Hearing Range
Human Hearing RangeIn this post, I'll look at an interesting aspect of Audacity – using it to explore the threshold of human hearing. In my book Digital Signal Processing: A Gentle Introduction with Audio Examples, I go into this topic and I include a side note on the amazing hearing range of our canine companions.
Creating a Test Audio FileAudacity allows for the generation of a variety of test signals. If you click the Generate->Tone menu, it looks something like...
Instant CIC
Summary:
A floating point model for a CIC decimator, including the frequency response.
Description:
A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.
One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...
Python number crunching faster? Part I
Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this to be very useful in my work. Lately there has been some chatter on speeding up Python.
From another project I follow, MyHDL, I was introduced to the Python JIT compiler,
Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects
Some Design and Simulation Considerations for Sampled-Data ControllersThis article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.
- Part 1: Introduction
Modelling a Noisy Communication Signal in MATLAB for the Analog to Digital Conversion Process
A critical thing to realize while modeling the signal that is going to be digitally processed is the SNR. In a receiver, the noise floor (hence the noise variance and hence its power) are determined by the temperature and the Bandwidth. For a system with a constant bandwidth, relatively constant temperature, the noise power remains relatively constant as well. This implies that the noise variance is a constant.
In MATLAB, the easiest way to create a noisy signal is by using...
Algebra's Laws of Powers and Roots: Handle With Care
Recently, for entertainment, I tried to solve a puzzling algebra problem featured on YouTube [1]. In due course I learned that algebra’s $$(a^x)^y=a^{xy}\qquad\qquad\qquad\qquad\qquad(1)$$
Law of Powers identity is not always valid (not always true) if variable a is real and exponents x and y are complex-valued.
The fact that Eq. (1) can’t reliably be used with complex x and y exponents surprised me. And then I thought, “Humm, …what other of algebra’s identities may also...
Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.
This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.
- Part 6: Self-Calibration, Measurements and Signalling (this part)
- Part 5:
Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed
This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.
Additional design...Phase and Amplitude Calculation for a Pure Complex Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from a DFT bin value and knowing the frequency. This is a much simpler problem to solve than the corresponding case for a pure real tone which I covered in an earlier blog article[1]. In the noiseless single tone case, these equations will be exact. In the presence of noise or other tones...
A Two Bin Solution
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by showing an implementation of how the parameters of a real pure tone can be calculated from just two DFT bin values. The equations from previous articles are used in tandem to first calculate the frequency, and then calculate the amplitude and phase of the tone. The approach works best when the tone is between the two DFT bins in terms of frequency.
The Coding...Correlation without pre-whitening is often misleading
White LiesCorrelation, as one of the first tools DSP users add to their tool box, can automate locating a known signal within a second (usually larger) signal. The expected result of a correlation is a nice sharp peak at the location of the known signal and few, if any, extraneous peaks.
A little thought will show this to be incorrect: correlating a signal with itself is only guaranteed to give a sharp peak if the signal's samples are uncorrelated --- for example if the signal is composed...