Multilayer Perceptrons and Event Classification with data from CODEC using Scilab and Weka
For my first blog, I thought I would introduce the reader to Scilab [1] and Weka [2]. In order to illustrate how they work, I will put together a script in Scilab that will sample using the microphone and CODEC on your PC and save the waveform as a CSV file.
Maximum Likelihood Estimation
Any observation has some degree of noise content that makes our observations uncertain. When we try to make conclusions based on noisy observations, we have to separate the dynamics of a signal from noise.
Approximating the area of a chirp by fitting a polynomial
Once in a while we need to estimate the area of a dataset in which we are interested. This area could give us, for example, force (mass vs acceleration) or electric power (electric current vs charge).
Deconvolution by least squares (Using the power of linear algebra in signal processing).
When we deal with our normal discrete signal processing operations, like FIR/IIR filtering, convolution, filter design, etc. we normally think of the signals as a constant stream of numbers that we put in a sequence
The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase
This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:
What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?I'll declare two things to convince you to continue reading.
Declaration# 1: "That the coefficients must be symmetrical" is not a correct
Phase and Amplitude Calculation for a Pure Real Tone in a DFT: Method 1
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the phase and amplitude of a non-integer frequency real tone in a DFT. The linearity of the Fourier Transform is exploited to reframe the problem as the equivalent of finding a set of coordinates in a specific vector space. The found coordinates are then used to calculate the phase and amplitude of the pure real tone in the DFT. This article...
Exact Frequency Formula for a Pure Real Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a major theoretical advance in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is...
DFT Bin Value Formulas for Pure Real Tones
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an analytical formula for the DFT of pure real tones. The formula is used to explain the well known properties of the DFT. A sample program is included, with its output, to numerically demonstrate the veracity of the formula. This article builds on the ideas developed in my previous two blog articles:
DFT Graphical Interpretation: Centroids of Weighted Roots of Unity
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...
The Exponential Nature of the Complex Unit Circle
IntroductionThis is an article to hopefully give an understanding to Euler's magnificent equation:
$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$
This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.
Complex...The Zeroing Sine Family of Window Functions
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by introducing a class of well behaved window functions that the author believes to be previously unrecognized. The definition and some characteristics are displayed. The heavy math will come in later articles. This is an introduction to the family, and a very special member of it.
This is one of my longer articles. The bulk of the material is in the front half. The...
Pentagon Construction Using Complex Numbers
A method for constructing a pentagon using a straight edge and a compass is deduced from the complex values of the Fifth Roots of Unity. Analytic values for the points are also derived.
Resolving 'Can't initialize target CPU' on TI C6000 DSPs - Part 1
Introduction
Today I am going to discuss some of the basics that can help prevent errors that frustrate some users. The information is directed toward TI C6000 family DSPs, but much of it also applies to other TI DSPs. In many cases they represent the user's first involvement with using Code Composer Studio [CCS] and a target board. It has been my experience that the primary cause of the "Can't initialize target CPU" error message and similar messages like "Error connecting to...
A Recipe for a Basic Trigonometry Table
IntroductionThis is an article that is give a better understanding to the Discrete Fourier Transform (DFT) by showing how to build a Sine and Cosine table from scratch. Along the way a recursive method is developed as a tone generator for a pure tone complex signal with an amplitude of one. Then a simpler multiplicative one. Each with drift correction factors. By setting the initial values to zero and one degrees and letting it run to build 45 values, the entire set of values needed...
Exact Frequency Formula for a Pure Real Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a major theoretical advance in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is...
Phase and Amplitude Calculation for a Pure Complex Tone in a DFT using Multiple Bins
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from several DFT bin values and knowing the frequency. This article is functionally an extension of my prior article "Phase and Amplitude Calculation for a Pure Complex Tone in a DFT"[1] which used only one bin for a complex tone, but it is actually much more similar to my approach for real...
Generating Partially Correlated Random Variables
IntroductionIt is often useful to be able to generate two or more signals with specific cross-correlations. Or, more generally, we would like to specify an $\left(N \times N\right)$ covariance matrix, $\mathbf{R}_{xx}$, and generate $N$ signals which will produce this covariance matrix.There are many applications in which this technique is useful. I discovered a version of this method while analysing radar systems, but the same approach can be used in a very wide range of...
Digging into an Audio Signal and the DSP Process Pipeline
In this post, I'll look at the benefits of using multiple perspectives when handling signals.A Pre-existing Audio FileLet's say we have an audio file of interest. Let's load it into Audacity and zoom in a little (using View → Zoom → Zoom In, multiple times). The figure illustrates the audio signal: just a basic single-tone signal.
By continuing to zoom into the signal, we eventually get to the point of seeing individual samples as illustrated below. Notice that I've marked one...
Resolving 'Can't initialize target CPU' on TI C6000 DSPs - Part 2
Configuration
The previous article discussed CCS configuration. The prerequisite for the following discussion is a valid CCS configuration file. All references will be for CCS 3.3, but they may be used or adapted to other versions of CCS. From the previous discussion, we know that the configuration file is located at 'C:\CCStudio_v3.3\cc\bin\brddat\ccBrd0.dat'.
XDS510 Emulators
Initial discussion will address only XDS510 class emulators that support TI drivers and utilities. This will...
Instantaneous Frequency Measurement
I would like to talk about the oft used method of measuring the carrier frequency in the world of Signal Collection and Characterization world. It is an elegant technique because of its simplicity. But, of course, with simplicity, there come drawbacks (sometimes...especially with this one!).
In the world of Radar detection and characterization, one of the key characteristics of interest is the carrier frequency of the signal. If the radar is pulsed, you will have a very wide bandwidth, a...
Deconvolution by least squares (Using the power of linear algebra in signal processing).
When we deal with our normal discrete signal processing operations, like FIR/IIR filtering, convolution, filter design, etc. we normally think of the signals as a constant stream of numbers that we put in a sequence
Hidden Linear Algebra in DSP
Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.
An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...
Python number crunching faster? Part I
Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this to be very useful in my work. Lately there has been some chatter on speeding up Python.
From another project I follow, MyHDL, I was introduced to the Python JIT compiler,
Instant CIC
Summary:
A floating point model for a CIC decimator, including the frequency response.
Description:
A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.
One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...
A brief look at multipath radio channels
Summary: Discussion of multipath propagation and fading in radio links
Radio channels, their effects on communications links and how to model them are a popular topic on comp.dsp. Unfortunately, for many of us there is little or no opportunity to get any "hands-on" experience with radio-related issues, because the required RF measurement equipment is not that easily available.This article gives a very simple example of a radio link that shows multipath propagation and...
Modelling a Noisy Communication Signal in MATLAB for the Analog to Digital Conversion Process
A critical thing to realize while modeling the signal that is going to be digitally processed is the SNR. In a receiver, the noise floor (hence the noise variance and hence its power) are determined by the temperature and the Bandwidth. For a system with a constant bandwidth, relatively constant temperature, the noise power remains relatively constant as well. This implies that the noise variance is a constant.
In MATLAB, the easiest way to create a noisy signal is by using...
Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed
This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.
Additional design...A Two Bin Solution
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by showing an implementation of how the parameters of a real pure tone can be calculated from just two DFT bin values. The equations from previous articles are used in tandem to first calculate the frequency, and then calculate the amplitude and phase of the tone. The approach works best when the tone is between the two DFT bins in terms of frequency.
The Coding...Phase and Amplitude Calculation for a Pure Complex Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from a DFT bin value and knowing the frequency. This is a much simpler problem to solve than the corresponding case for a pure real tone which I covered in an earlier blog article[1]. In the noiseless single tone case, these equations will be exact. In the presence of noise or other tones...
Correlation without pre-whitening is often misleading
White LiesCorrelation, as one of the first tools DSP users add to their tool box, can automate locating a known signal within a second (usually larger) signal. The expected result of a correlation is a nice sharp peak at the location of the known signal and few, if any, extraneous peaks.
A little thought will show this to be incorrect: correlating a signal with itself is only guaranteed to give a sharp peak if the signal's samples are uncorrelated --- for example if the signal is composed...