Sign in

Not a member? | Forgot your Password?

Search Online Books

Search tips

Free Online Books

Free PDF Downloads

A Quadrature Signals Tutorial: Complex, But Not Complicated

Understanding the 'Phasing Method' of Single Sideband Demodulation

Complex Digital Signal Processing in Telecommunications

Introduction to Sound Processing

C++ Tutorial

Introduction of C Programming for DSP Applications

Fixed-Point Arithmetic: An Introduction

Cascaded Integrator-Comb (CIC) Filter Introduction


FIR Filter Design Software

See Also

Embedded SystemsFPGA
Chapter Contents:

Search Physical Audio Signal Processing


Book Index | Global Index

Would you like to be notified by email when Julius Orion Smith III publishes a new entry into his blog?


Lumped Models

This chapter introduces modeling of ``lumped'' physical systems, such as configurations of masses, springs, and ``dashpots''.

The term ``lumped'' comes from electrical engineering, and refers to lumped-parameter analysis, as opposed to distributed-parameter analysis. Examples of ``distributed'' systems in musical acoustics include ideal strings, acoustic tubes, and anything that propagates waves. In general, a lumped-parameter approach is appropriate when the physical object has dimensions that are small relative to the wavelength of vibration. Examples from musical acoustics include brass-players' lips (modeled using one or two masses attached to springs--see §9.7), and the piano hammer (modeled using a mass and nonlinear spring, as discussed in §9.4). In contrast to these lumped-modeling examples, the vibrating string is most efficiently modeled as a sampled distributed-parameter system, as discussed in Chapter 6, although lumped models of strings (using, e.g., a mass-spring-chain [318]) work perfectly well, albeit at a higher computational expense for a given model quality [69,145]. In the realm of electromagnetism, distributed-parameter systems include electric transmission lines and optical waveguides, while the typical lumped-parameter systems are ordinary RLC circuits (connecting resistors, capacitors, and inductors). Again, whenever the oscillation wavelength is large relative to the geometry of the physical component, a lumped approximation may be considered. As a result, there is normally a high-frequency limit on the validity of a lumped-parameter model. For the same reason, there is normally an upper limit on physical size as well.

We begin with the fundamental concept of impedance, and discuss the elementary lumped impedances associated with springs, mass, and dashpots. These physical objects are analogous to capacitors, inductors, and resistors in lumped-parameter electrical circuits. Next, we discuss general interconnections of such elements, characterized at a single input/output location by means of one-port network theory. In particular, we will see that all passive networks present a positive real impedance at any port (input/output point). A network diagram may be replaced by an impedance diagram, which may then be translated into its equivalent circuit (replacing springs by capacitors, masses by inductors, and dashpots by resistors).

In the following chapter, we discuss digitization of lumped networks by various means, including finite differences and the bilinear transformation.

Previous: Practical Advice
Next: Impedance

Order a Hardcopy of Physical Audio Signal Processing

About the Author: Julius Orion Smith III
Julius Smith's background is in electrical engineering (BS Rice 1975, PhD Stanford 1983). He is presently Professor of Music and Associate Professor (by courtesy) of Electrical Engineering at Stanford's Center for Computer Research in Music and Acoustics (CCRMA), teaching courses and pursuing research related to signal processing applied to music and audio systems. See for details.


No comments yet for this page

Add a Comment
You need to login before you can post a comment (best way to prevent spam). ( Not a member? )