A Markov View of the Phase Vocoder Part 2

Christian Yost January 8, 2019

Last post we motivated the idea of viewing the classic phase vocoder as a Markov process. This was due to the fact that the input signal’s features are unknown to the computer, and the phase advancement for the next synthesis frame is entirely dependent on the phase advancement of the current frame. We will dive a bit deeper into this idea, and flesh out some details which we left untouched last week. This includes the effect our discrete Fourier transform has on the...

A Markov View of the Phase Vocoder Part 1

Christian Yost January 8, 2019

Hello! This is my first post on dsprelated.com. I have a blog that I run on my website, http://www.christianyostdsp.com. In order to engage with the larger DSP community, I'd like to occasionally post my more engineering heavy writing here and get your thoughts.

Today we will look at the phase vocoder from a different angle by bringing some probability into the discussion. This is the first part in a short series. Future posts will expand further upon the ideas...

Evaluate Window Functions for the Discrete Fourier Transform

Neil Robertson December 18, 2018

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum.  For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT.  Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3].  There are many different window functions and each produces a different approximation of the spectrum.  In this post, we’ll present Matlab code that...

Feedback Controllers - Making Hardware with Firmware. Part 10. DSP/FPGAs Behaving Irrationally

Steve Maslen November 22, 2018

This article will look at a design approach for feedback controllers featuring  low-latency "irrational" characteristics to enable the creation of physical components such as transmission lines. Some thought will also be given as to the capabilities of the currently utilized Intel Cyclone V, the new Cyclone 10 GX and the upcoming Xilinx Versal floating-point FPGAs/ACAPs.    

Fig 1. Making a Transmission Line, with the Circuit Emulator



Polar Coding Notes: A Simple Proof

Lyons Zhang November 8, 2018

For any B-DMC $W$, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0, 1)$, as $N$ goes to infinity through powers of two, the fraction of indices $i \in \{1, \dots, N\}$ for which $I(W_N^{(i)}) \in (1 − \delta, 1]$ goes to $I(W)$ and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to $1−I(W)^{[1]}$.

Mrs. Gerber’s Lemma

Mrs. Gerber’s Lemma provides a lower bound on the entropy of the modulo-$2$ sum of two binary random...

Polar Coding Notes: Channel Combining and Channel Splitting

Lyons Zhang October 19, 20181 comment

Channel Combining  

Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.  

The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.  

The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...

Project Report : Digital Filter Blocks in MyHDL and their integration in pyFDA

Sriyash Caculo August 13, 20181 comment

The Google Summer of Code 2018 is now in its final stages, and I’d like to take a moment to look back at what goals were accomplished, what remains to be completed and what I have learnt.

The project overview was discussed in the previous blog posts. However this post serves as a guide to anyone who wishes to learn about the project or carry it forward. Hence I will go over the project details again.

Project overview

The project “Digital Filter Blocks in MyHDL and PyFDA integration" aims...

Sensors Expo - Trip Report & My Best Video Yet!

Stephane Boucher August 3, 20183 comments

This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.  

Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip.  If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...

Design a DAC sinx/x Corrector

Neil Robertson July 22, 20187 comments

This post provides a Matlab function that designs linear-phase FIR sinx/x correctors.  It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.

A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process.  In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses.  These are converted by the DAC into contiguous pulses...

Off Topic: Refraction in a Varying Medium

Cedron Dawg July 11, 2018

This article is another digression from a better understanding of the DFT. In fact, it is a digression from DSP altogether. However, since many of the readers here are Electrical Engineers and other folks who are very scientifically minded, I hope this article is of interest. A differential vector equation is derived for the trajectory of a point particle in a field of varying index of refraction. This applies to light, of course, but since it is a purely theoretical...

TCP/IP interface (Matlab/Octave)

Markus Nentwig June 17, 201210 comments

Communicate with measurement instruments via Ethernet (no-toolbox-Matlab or Octave)


Measurement automation is digital signal processing in a wider sense: Getting a digital signal from an analog world usually involves some measurement instruments, for example a spectrum analyzer. Modern instruments, and also many off-the-shelf prototyping boards such as FPGA cards [1] or microcontrollers [2] are able to communicate via Ethernet. Here, I provide some basic mex-functions (compiled C...

Computing Large DFTs Using Small FFTs

Rick Lyons June 23, 200821 comments

It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.

The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...

How Discrete Signal Interpolation Improves D/A Conversion

Rick Lyons May 28, 20121 comment
This blog post is also available in pdf format. Download here.

Earlier this year, for the Linear Audio magazine, published in the Netherlands whose subscribers are technically-skilled hi-fi audio enthusiasts, I wrote an article on the fundamentals of interpolation as it's used to improve the performance of analog-to-digital conversion. Perhaps that article will be of some value to the subscribers of dsprelated.com. Here's what I wrote:

We encounter the process of digital-to-analog...

Sinusoidal Frequency Estimation Based on Time-Domain Samples

Rick Lyons April 20, 201719 comments

The topic of estimating a noise-free real or complex sinusoid's frequency, based on fast Fourier transform (FFT) samples, has been presented in recent blogs here on dsprelated.com. For completeness, it's worth knowing that simple frequency estimation algorithms exist that do not require FFTs to be performed . Below I present three frequency estimation algorithms that use time-domain samples, and illustrate a very important principle regarding so called "exact"...

A poor man's Simulink

Markus Nentwig January 24, 20153 comments

Glue between Octave and NGSPICE for discrete- and continuous time cosimulation (download) Keywords: Octave, SPICE, Simulink


Many DSP problems have close ties with the analog world. For example, a switched-mode audio power amplifier uses a digital control loop to open and close power transistors driving an analog filter. There are commercial tools for digital-analog cosimulation: Simulink comes to mind, and mainstream EDA vendors support VHDL-AMS or Verilog-A in their...

The Number 9, Not So Magic After All

Rick Lyons October 1, 20146 comments

This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.

For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...

Spectral Flipping Around Signal Center Frequency

Rick Lyons November 7, 20074 comments

Most of us are familiar with the process of flipping the spectrum (spectral inversion) of a real signal by multiplying that signal's time samples by (-1)n. In that process the center of spectral rotation is fs/4, where fs is the signal's sample rate in Hz. In this blog we discuss a different kind of spectral flipping process.

Consider the situation where we need to flip the X(f) spectrum in Figure 1(a) to obtain the desired Y(f) spectrum shown in Figure 1(b). Notice that the center of...

Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World

Jason Sachs September 7, 20136 comments

When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...

Generating Complex Baseband and Analytic Bandpass Signals

Rick Lyons November 2, 20112 comments

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of reference table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or...

Signed serial-/parallel multiplication

Markus Nentwig February 16, 2014

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

  • A detailed discussion of bit-level trickstery in signed-signed multiplication
  • Algorithm based on Wikipedia example
  • Includes a Verilog implementation with parametrized bit width
Signed serial-/parallel multiplication

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...