A Beginner's Guide to OFDM

Qasim Chaudhari May 1, 20173 comments

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system. 

The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can...

A Recipe for a Common Logarithm Table

Cedron Dawg April 29, 2017

This is an article that is a digression from trying to give a better understanding to the Discrete Fourier Transform (DFT).

A method for building a table of Base 10 Logarithms, also known as Common Logarithms, is featured using math that can be done with paper and pencil. The reader is assumed to have some familiarity with logarithm functions. This material has no dependency on the material in my previous blog articles.

If you were ever curious about how...

Sinusoidal Frequency Estimation Based on Time-Domain Samples

Rick Lyons April 20, 201718 comments

The topic of estimating a noise-free real or complex sinusoid's frequency, based on fast Fourier transform (FFT) samples, has been presented in recent blogs here on dsprelated.com. For completeness, it's worth knowing that simple frequency estimation algorithms exist that do not require FFTs to be performed . Below I present three frequency estimation algorithms that use time-domain samples, and illustrate a very important principle regarding so called "exact"...

Three Bin Exact Frequency Formulas for a Pure Complex Tone in a DFT

Cedron Dawg April 13, 2017

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving exact formulas for the frequency of a complex tone in a DFT. This time it is three bin versions. Although the problem is similar to the two bin version in my previous blog article "A Two Bin Exact Frequency Formula for a Pure Complex Tone in a DFT"[1], a slightly different approach is taken using linear algebra concepts. Because of an extra degree of freedom...

Launch of Youtube Channel: My First Videos - Embedded World 2017

Stephane Boucher April 5, 201721 comments

I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience.  I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.

So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch.  Trade shows are...

A Two Bin Exact Frequency Formula for a Pure Complex Tone in a DFT

Cedron Dawg March 20, 20179 comments

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a complex tone in a DFT. It is basically a parallel treatment to the real case given in Exact Frequency Formula for a Pure Real Tone in a DFT. Since a real signal is the sum of two complex signals, the frequency formula for a single complex tone signal is a lot less complicated than for the real case.


DFT Bin Value Formulas for Pure Complex Tones

Cedron Dawg March 17, 2017

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an analytical formula for the DFT of pure complex tones and an alternative variation. It is basically a parallel treatment to the real case given in DFT Bin Value Formulas for Pure Real Tones. In order to understand how a multiple tone signal acts in a DFT it is necessary to first understand how a single pure tone acts. Since a DFT is a linear transform, the...

Multi-Decimation Stage Filtering for Sigma Delta ADCs: Design and Optimization

AHMED SHAHEIN March 1, 20176 comments

During my research on digital FIR decimation filters I have been developing various Matlab scripts and functions. In which I have decided later on to consolidate it in a form of a toolbox. I have developed this toolbox to assist and automate the process of designing the multi-stage decimation filter(s). The toolbox is published as an open-source at the MathWorks web-site. My dissertation is open for public online as well. The toolbox has a wide set of examples to guide the user...

Canonic Signed Digit (CSD) Representation of Integers

Neil Robertson February 18, 2017

In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients.  I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values.  Here I want to use that function to illustrate a few properties of CSD numbers.

In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}.  Thus, for example, the binary value 1 1...

Frequency Translation by Way of Lowpass FIR Filtering

Rick Lyons February 4, 20175 comments

Some weeks ago a question appeared on the dsp.related Forum regarding the notion of translating a signal down in frequency and lowpass filtering in a single operation [1]. It is possible to implement such a process by embedding a discrete cosine sequence's values within the coefficients of a traditional lowpass FIR filter. I first learned about this process from Reference [2]. Here's the story.

Traditional Frequency Translation Prior To Filtering

Think about the process shown in...

Waveforms that are their own Fourier Transform

Steve Smith January 16, 200812 comments

Mea Culpa 

There are many scary things about writing a technical book. Can I make the concepts clear? It is worth the effort? Will it sell? But all of these pale compared to the biggest fear: What if I'm just plain wrong? Not being able to help someone is one thing, but leading them astray is far worse.

My book on DSP has now been published for almost ten years. I've found lots of typos, a few misstatements, and many places where the explanations confuse even me. But I have been lucky;...

How to Find a Fast Floating-Point atan2 Approximation

Nic Taylor May 26, 20177 comments
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:

$$ atan(z) \approx \dfrac{z}{1.0 +...

An s-Plane to z-Plane Mapping Example

Rick Lyons September 24, 20166 comments

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.


The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201516 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct

Goertzel Algorithm for a Non-integer Frequency Index

Rick Lyons October 7, 2013

If you've read about the Goertzel algorithm, you know it's typically presented as an efficient way to compute an individual kth bin result of an N-point discrete Fourier transform (DFT). The integer-valued frequency index k is in the range of zero to N-1 and the standard block diagram for the Goertzel algorithm is shown in Figure 1. For example, if you want to efficiently compute just the 17th DFT bin result (output sample X17) of a 64-point DFT you set integer frequency index k = 17 and N =...

A Simple Complex Down-conversion Scheme

Rick Lyons January 21, 20085 comments
Recently I was experimenting with complex down-conversion schemes. That is, generating an analytic (complex) version, centered at zero Hz, of a real bandpass signal that was originally centered at ±fs/4 (one fourth the sample rate). I managed to obtain one such scheme that is computationally efficient, and it might be of some mild interest to you guys. The simple complex down-conversion scheme is shown in Figure 1(a).

It works like this: say we have a real xR(n) input bandpass...

The Swiss Army Knife of Digital Networks

Rick Lyons June 13, 20163 comments

This blog describes a general discrete-signal network that appears, in various forms, inside so many DSP applications. 

Figure 1 shows how the network's structure has the distinct look of a digital filter—a comb filter followed by a 2nd-order recursive network. However, I do not call this useful network a filter because its capabilities extend far beyond simple filtering. Through a series of examples I've illustrated the fundamental strength of this Swiss Army Knife of digital networks...

Signed serial-/parallel multiplication

Markus Nentwig February 16, 2014

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

  • A detailed discussion of bit-level trickstery in signed-signed multiplication
  • Algorithm based on Wikipedia example
  • Includes a Verilog implementation with parametrized bit width
Signed serial-/parallel multiplication

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...

Setting the 3-dB Cutoff Frequency of an Exponential Averager

Rick Lyons October 22, 20126 comments

This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.

Figure 1 shows...

Digital PLL's -- Part 1

Neil Robertson June 7, 201610 comments
1. Introduction

Figure 1.1 is a block diagram of a digital PLL (DPLL).  The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal.  The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance.  The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...