Project Report : Digital Filter Blocks in MyHDL and their integration in pyFDA

Sriyash Caculo August 13, 20181 comment

The Google Summer of Code 2018 is now in its final stages, and I’d like to take a moment to look back at what goals were accomplished, what remains to be completed and what I have learnt.

The project overview was discussed in the previous blog posts. However this post serves as a guide to anyone who wishes to learn about the project or carry it forward. Hence I will go over the project details again.

Project overview

The project “Digital Filter Blocks in MyHDL and PyFDA integration" aims...


Sensors Expo - Trip Report & My Best Video Yet!

Stephane Boucher August 3, 20183 comments

This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.  

Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip.  If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...


Design a DAC sinx/x Corrector

Neil Robertson July 22, 20187 comments

This post provides a Matlab function that designs linear-phase FIR sinx/x correctors.  It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.

A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process.  In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses.  These are converted by the DAC into contiguous pulses...


Off Topic: Refraction in a Varying Medium

Cedron Dawg July 11, 2018
Introduction

This article is another digression from a better understanding of the DFT. In fact, it is a digression from DSP altogether. However, since many of the readers here are Electrical Engineers and other folks who are very scientifically minded, I hope this article is of interest. A differential vector equation is derived for the trajectory of a point particle in a field of varying index of refraction. This applies to light, of course, but since it is a purely theoretical...


Feedback Controllers - Making Hardware with Firmware. Part 9. Closing the low-latency loop

Steve Maslen July 9, 2018

It's time to put together the DSP and feedback control sciences, the evaluation electronics, the Intel Cyclone floating-point FPGA algorithms and the built-in control loop test-bed and evaluate some example designs. We will be counting the nanoseconds and looking for textbook performance in the creation of emulated hardware circuits. Along the way, there is a printed circuit board (PCB) issue to solve using DSP.    

Fig 1. The evaluation platform

Additional design...


Project update-2 : Digital Filter Blocks in MyHDL and their integration in pyFDA

Sriyash Caculo July 9, 2018

This is an exciting update in the sense that it demonstrates a working model of one important aspect of the project: The integration or ‘glue’ between and Pyfda and MyHDL filter blocks. 

So, why do we need to integrate and how do we go about it?

As discussed in earlier posts, the idea is to provide a workflow in Pyfda that automates the process of Implementing a fixpoint filter in VHDL / Verilog, and verify the correct performance in a digital design environment. MyHDL based...


Project update-1 : Digital Filter Blocks in MyHDL and their integration in pyFDA

Sriyash Caculo June 22, 2018

This blog post presents the progress made up to week 5 in my GSoC project “Digital Filter blocks and their integration in PyFDA”. Progress was made in two areas of the project.

  • Implementation of filter blocks in MyHDL
  • Design of interface between filter blocks and PyFDA

This post will primarily discuss filter block implementation. The interface will be discussed in a later post once further progress is made.

Direct form-I FIR filter

The equation specifies the direct form I...


Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

Jason Sachs June 19, 2018

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.

This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...


Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction

Jason Sachs June 12, 2018

Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.

This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.

Ernie, You Have a Banana in Your Ear

I have had a really really tough time writing this article. I like the...


Who else is going to Sensors Expo in San Jose? Looking for roommate(s)!

Stephane Boucher May 29, 20186 comments

This will be my first time attending this show and I must say that I am excited. I am bringing with me my cameras and other video equipment with the intention to capture as much footage as possible and produce a (hopefully) fun to watch 'highlights' video. I will also try to film as many demos as possible and share them with you.

I enjoy going to shows like this one as it gives me the opportunity to get out of my home-office (from where I manage and run the *Related sites) and actually...


How Discrete Signal Interpolation Improves D/A Conversion

Rick Lyons May 28, 20121 comment
This blog post is also available in pdf format. Download here.

Earlier this year, for the Linear Audio magazine, published in the Netherlands whose subscribers are technically-skilled hi-fi audio enthusiasts, I wrote an article on the fundamentals of interpolation as it's used to improve the performance of analog-to-digital conversion. Perhaps that article will be of some value to the subscribers of dsprelated.com. Here's what I wrote:

We encounter the process of digital-to-analog...


Computing Large DFTs Using Small FFTs

Rick Lyons June 23, 200818 comments

It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.

The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...


FFT Interpolation Based on FFT Samples: A Detective Story With a Surprise Ending

Rick Lyons April 16, 201837 comments

This blog presents several interesting things I recently learned regarding the estimation of a spectral value located at a frequency lying between previously computed FFT spectral samples. My curiosity about this FFT interpolation process was triggered by reading a spectrum analysis paper written by three astronomers [1].

My fixation on one equation in that paper led to the creation of this blog.

Background

The notion of FFT interpolation is straightforward to describe. That is, for example,...


Sinusoidal Frequency Estimation Based on Time-Domain Samples

Rick Lyons April 20, 201719 comments

The topic of estimating a noise-free real or complex sinusoid's frequency, based on fast Fourier transform (FFT) samples, has been presented in recent blogs here on dsprelated.com. For completeness, it's worth knowing that simple frequency estimation algorithms exist that do not require FFTs to be performed . Below I present three frequency estimation algorithms that use time-domain samples, and illustrate a very important principle regarding so called "exact"...


A poor man's Simulink

Markus Nentwig January 24, 20153 comments

Glue between Octave and NGSPICE for discrete- and continuous time cosimulation (download) Keywords: Octave, SPICE, Simulink

Introduction

Many DSP problems have close ties with the analog world. For example, a switched-mode audio power amplifier uses a digital control loop to open and close power transistors driving an analog filter. There are commercial tools for digital-analog cosimulation: Simulink comes to mind, and mainstream EDA vendors support VHDL-AMS or Verilog-A in their...


Spectral Flipping Around Signal Center Frequency

Rick Lyons November 7, 20074 comments

Most of us are familiar with the process of flipping the spectrum (spectral inversion) of a real signal by multiplying that signal's time samples by (-1)n. In that process the center of spectral rotation is fs/4, where fs is the signal's sample rate in Hz. In this blog we discuss a different kind of spectral flipping process.

Consider the situation where we need to flip the X(f) spectrum in Figure 1(a) to obtain the desired Y(f) spectrum shown in Figure 1(b). Notice that the center of...


The Number 9, Not So Magic After All

Rick Lyons October 1, 20146 comments

This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.

For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...


Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World

Jason Sachs September 7, 20136 comments

When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...


Generating Complex Baseband and Analytic Bandpass Signals

Rick Lyons November 2, 20112 comments

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of reference table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or...


Signed serial-/parallel multiplication

Markus Nentwig February 16, 2014

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

Summary
  • A detailed discussion of bit-level trickstery in signed-signed multiplication
  • Algorithm based on Wikipedia example
  • Includes a Verilog implementation with parametrized bit width
Signed serial-/parallel multiplication

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...