Implementing Impractical Digital Filters

Rick Lyons July 19, 20162 comments

This blog discusses a problematic situation that can arise when we try to implement certain digital filters. Occasionally in the literature of DSP we encounter impractical digital IIR filter block diagrams, and by impractical I mean block diagrams that cannot be implemented. This blog gives examples of impractical digital IIR filters and what can be done to make them practical.

Implementing an Impractical Filter: Example 1

Reference [1] presented the digital IIR bandpass filter...

An Astounding Digital Filter Design Application

Rick Lyons July 7, 201612 comments

I've recently encountered a digital filter design application that astonished me with its design flexibility, capability, and ease of use. The software is called the "ASN Filter Designer." After experimenting with a demo version of this filter design software I was so impressed that I simply had publicize it to the subscribers here on

What I Liked About the ASN Filter Designer

With typical filter design software packages the user enters numerical values for the...

Digital PLL's -- Part 2

Neil Robertson June 15, 2016

In Part 1, we found the time response of a 2nd order PLL with a proportional + integral (lead-lag) loop filter.  Now let’s look at this PLL in the Z-domain [1, 2].  We will find that the response is characterized by a loop natural frequency ωn and damping coefficient ζ. 

Having a Z-domain model of the DPLL will allow us to do three things:

Compute the values of loop filter proportional gain KL and integrator gain KI that give the desired loop natural frequency and...

The Swiss Army Knife of Digital Networks

Rick Lyons June 13, 20163 comments

This blog describes a general discrete-signal network that appears, in various forms, inside so many DSP applications. 

Figure 1 shows how the network's structure has the distinct look of a digital filter—a comb filter followed by a 2nd-order recursive network. However, I do not call this useful network a filter because its capabilities extend far beyond simple filtering. Through a series of examples I've illustrated the fundamental strength of this Swiss Army Knife of digital networks...

Digital PLL's -- Part 1

Neil Robertson June 7, 20167 comments
1. Introduction

Figure 1.1 is a block diagram of a digital PLL (DPLL).  The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal.  The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance.  The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...

Decimator Image Response

Neil Robertson May 24, 20164 comments

Note:  this is an improved version of a post I made to the dsp forum a few weeks ago.

This article presents a way to compute and plot the image response of a decimator.  I’m defining the image response as the unwanted spectrum of the impulse response after downsampling, relative to the desired passband response. 

Consider a decimate-by-4 filter with fs= 4 Hz, to which we apply the signal spectrum shown in Figure 1.  The desired signal is the CW component at 0.22 Hz,...

Peak to Average Power Ratio and CCDF

Neil Robertson May 17, 20162 comments

Peak to Average Power Ratio (PAPR) is often used to characterize digitally modulated signals.  One example application is setting the level of the signal in a digital modulator.  Knowing PAPR allows setting the average power to a level that is just low enough to minimize clipping.

However, for a random signal, PAPR is a statistical quantity.  We have to ask, what is the probability of a given peak power?  Then we can decide where to set the average...

Filter a Rectangular Pulse with no Ringing

Neil Robertson May 12, 201610 comments

To filter a rectangular pulse without any ringing, there is only one requirement on the filter coefficients:  they must all be positive.  However, if we want the leading and trailing edge of the pulse to be symmetrical, then the coefficients must be symmetrical.  What we are describing is basically a window function.

Consider a rectangular pulse 32 samples long with fs = 1 kHz.  Here is the Matlab code to generate the pulse:

N= 64; fs= 1000; % Hz sample...

Data Types for Control & DSP

Tim Wescott April 27, 20166 comments

There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.

I recently posted an entry on PID control. In that article I glossed over the data types used by showing "double" in all of my example code.  Numerically, this should work for most control problems, but it can be an extravagant use of processor resources.  There ought to be a better way to determine what precision you need...

PID Without a PhD

Tim Wescott April 26, 201611 comments

I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.

This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...

A Simple Complex Down-conversion Scheme

Rick Lyons January 21, 20085 comments
Recently I was experimenting with complex down-conversion schemes. That is, generating an analytic (complex) version, centered at zero Hz, of a real bandpass signal that was originally centered at ±fs/4 (one fourth the sample rate). I managed to obtain one such scheme that is computationally efficient, and it might be of some mild interest to you guys. The simple complex down-conversion scheme is shown in Figure 1(a).

It works like this: say we have a real xR(n) input bandpass...

Goertzel Algorithm for a Non-integer Frequency Index

Rick Lyons October 7, 2013

If you've read about the Goertzel algorithm, you know it's typically presented as an efficient way to compute an individual kth bin result of an N-point discrete Fourier transform (DFT). The integer-valued frequency index k is in the range of zero to N-1 and the standard block diagram for the Goertzel algorithm is shown in Figure 1. For example, if you want to efficiently compute just the 17th DFT bin result (output sample X17) of a 64-point DFT you set integer frequency index k = 17 and N =...

The Exponential Nature of the Complex Unit Circle

Cedron Dawg March 10, 20152 comments

This is an article to hopefully give an understanding to Euler's magnificent equation:

$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$

This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.


Minimum Shift Keying (MSK) - A Tutorial

Qasim Chaudhari January 25, 20174 comments

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...

Signed serial-/parallel multiplication

Markus Nentwig February 16, 2014

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

  • A detailed discussion of bit-level trickstery in signed-signed multiplication
  • Algorithm based on Wikipedia example
  • Includes a Verilog implementation with parametrized bit width
Signed serial-/parallel multiplication

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...

Setting the 3-dB Cutoff Frequency of an Exponential Averager

Rick Lyons October 22, 20126 comments

This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.

Figure 1 shows...

Some Observations on Comparing Efficiency in Communication Systems

Eric Jacobsen March 17, 2011

Engineering is usually about managing efficiencies of one sort or another. One of my favorite working definitions of an engineer says, "An engineer is somebody who can do for a nickel what any damn fool can do for a dollar." In that case, the implication is that the cost is one of the characteristics being optimized. But cost isn't always the main efficiency metric, or at least the only one. Consider how a common transportation appliance, the automobile, is optimized...

Design of an anti-aliasing filter for a DAC

Markus Nentwig August 18, 2012
  • Octaveforge / Matlab design script. Download: here
  • weighted numerical optimization of Laplace-domain transfer function
  • linear-phase design, optimizes vector error (magnitude and phase)
  • design process calculates and corrects group delay internally
  • includes sinc() response of the sample-and-hold stage in the ADC
  • optionally includes multiplierless FIR filter
Problem Figure 1: Typical FIR-DAC-analog lowpass line-up

Digital-to-analog conversion connects digital...

The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201516 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct

Spline interpolation

Markus Nentwig May 11, 20142 comments

A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog


Splines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...