Canonic Signed Digit (CSD) Representation of Integers

Neil Robertson February 18, 2017

In my last post I presented Matlab code to synthesize multiplierless FIR filters using Canonic Signed Digit (CSD) coefficients.  I included a function dec2csd1.m (repeated here in Appendix A) to convert decimal integers to binary CSD values.  Here I want to use that function to illustrate a few properties of CSD numbers.

In a binary signed-digit number system, we allow each binary digit to have one of the three values {0, 1, -1}.  Thus, for example, the binary value 1 1...

Frequency Translation by Way of Lowpass FIR Filtering

Rick Lyons February 4, 20175 comments

Some weeks ago a question appeared on the dsp.related Forum regarding the notion of translating a signal down in frequency and lowpass filtering in a single operation [1]. It is possible to implement such a process by embedding a discrete cosine sequence's values within the coefficients of a traditional lowpass FIR filter. I first learned about this process from Reference [2]. Here's the story.

Traditional Frequency Translation Prior To Filtering

Think about the process shown in...

Minimum Shift Keying (MSK) - A Tutorial

Qasim Chaudhari January 25, 20174 comments

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...

New Video: Parametric Oscillations

Tim Wescott January 4, 2017

I just posted this last night.  It's kinda off-topic from the mission of the channel, but I realized that it had been months since I'd posted a video, and having an excuse to build on helped keep me on track.

Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Jason Sachs November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...

Some Thoughts on Sampling

Qasim Chaudhari November 15, 20162 comments

Some time ago, I came across an interesting problem. In the explanation of sampling process, a representation of impulse sampling shown in Figure 1 below is illustrated in almost every textbook on DSP and communications. The question is: how is it possible that during sampling, the frequency axis gets scaled by $1/T_s$ -- a very large number? For an ADC operating at 10 MHz for example, the amplitude of the desired spectrum and spectral replicas is $10^7$! I thought that there must be...

Matlab Code to Synthesize Multiplierless FIR Filters

Neil Robertson October 31, 20162 comments

This article presents Matlab code to synthesize multiplierless Finite Impulse Response (FIR) lowpass filters.

A filter coefficient can be represented as a sum of powers of 2.  For example, if a coefficient = decimal 5 multiplies input x, the output is $y= 2^2*x + 2^0*x$.  The factor of $2^2$ is then implemented with a shift of 2 bits.  This method is not efficient for coefficients having a lot of 1’s, e.g. decimal 31 = 11111.  To reduce the number of non-zero...

Wavelets II - Vanishing Moments and Spectral Factorization

Vincent Herrmann October 11, 2016

In the previous blog post I described the workings of the Fast Wavelet Transform (FWT) and how wavelets and filters are related. As promised, in this article we will see how to construct useful filters. Concretely, we will find a way to calculate the Daubechies filters, named after Ingrid Daubechies, who invented them and also laid much of the mathematical foundations for wavelet analysis.

Besides the content of the last post, you should be familiar with basic complex algebra, the...

Fibonacci trick

Tim Wescott October 10, 20164 comments

I'm working on a video, tying the Fibonacci sequence into the general subject of difference equations.

Here's a fun trick: take any two consecutive numbers in the Fibonacci sequence, say 34 and 55.  Now negate one and use them as the seed for the Fibonacci sequence, larger magnitude first, i.e.

$-55, 34, \cdots$

Carry it out, and you'll eventually get the Fibonacci sequence, or it's negative:

$-55, 34, -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1 \cdots$

This is NOT a general property of difference...

The Power Spectrum

Neil Robertson October 8, 2016

Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis.  However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain.  This post shows how to calculate an accurate power spectrum.

Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...

Linear-phase DC Removal Filter

Rick Lyons March 30, 200820 comments

This blog describes several DC removal networks that might be of interest to the readers.

Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a time-domain sequence [1]. Discussed in that thread was the notion of removing a signal's DC bias by subtracting the signal's moving average from that signal, as shown in Figure 1(a).

Figure 1.

At first I thought...

Computing the Group Delay of a Filter

Rick Lyons November 19, 200817 comments

I just learned a new method (new to me at least) for computing the group delay of digital filters. In the event this process turns out to be interesting to my readers, this blog describes the method. Let's start with a bit of algebra so that you'll know I'm not making all of this up.

Assume we have the N-sample h(n) impulse response of a digital filter, with n being our time-domain index, and that we represent the filter's discrete-time Fourier transform (DTFT), H(ω), in polar form...

TCP/IP interface (Matlab/Octave)

Markus Nentwig June 17, 201210 comments

Communicate with measurement instruments via Ethernet (no-toolbox-Matlab or Octave)


Measurement automation is digital signal processing in a wider sense: Getting a digital signal from an analog world usually involves some measurement instruments, for example a spectrum analyzer. Modern instruments, and also many off-the-shelf prototyping boards such as FPGA cards [1] or microcontrollers [2] are able to communicate via Ethernet. Here, I provide some basic mex-functions (compiled C...

Frequency-Domain Periodicity and the Discrete Fourier Transform

Eric Jacobsen August 6, 2012


Some of the better understood aspects of time-sampled systems are the limitations and requirements imposed by the Nyquist sampling theorem [1]. Somewhat less understood is the periodic nature of the spectra of sampled signals. This article provides some insights into sampling that not only explain the periodic nature of the sampled spectrum, but aliasing, bandlimited sampling, and the so-called "super-Nyquist" or IF sampling. The approaches taken here include both mathematical...

Noise shaping

Markus Nentwig December 9, 20121 comment

Keywords: Quantization noise; noise shaping

A brief introduction to noise shaping, with firm resolve not to miss the forest for the trees. We may still stumble over some assorted roots. Matlab example code is included.


Fig. 1 shows a digital signal that is reduced to a lower bit width, for example a 16 bit signal being sent to a 12 bit digital-to-analog converter. Rounding to the nearest output value is obviously the best that can be done to minimize the error of each...

Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World

Jason Sachs September 7, 20136 comments

When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...

Curse you, iPython Notebook!

Christopher Felton May 2, 20124 comments


First, I think ipython is great. I use it daily and always have an ipython terminal open.  But just recently, I was showing off the ipython 0.12 notebook and in the process created a lengthy example while demonstrating the cool features of the ipython notebook.  The example included LaTeX equations, plots, etc.  Since the notebook session was on something of relevance I decided to clean up the session and use it for the beginning of a report.

Recruiting New Bloggers!

Stephane Boucher October 16, 20157 comments

Previous calls for bloggers have been very successful in recruiting some great communicators - Rick LyonsJason Sachs, Victor Yurkovsky, Mike Silva, Markus NentwigGene BrenimanStephen Friederichs,

How Discrete Signal Interpolation Improves D/A Conversion

Rick Lyons May 28, 20121 comment
This blog post is also available in pdf format. Download here.

Earlier this year, for the Linear Audio magazine, published in the Netherlands whose subscribers are technically-skilled hi-fi audio enthusiasts, I wrote an article on the fundamentals of interpolation as it's used to improve the performance of analog-to-digital conversion. Perhaps that article will be of some value to the subscribers of Here's what I wrote:

We encounter the process of digital-to-analog...

The History of CIC Filters: The Untold Story

Rick Lyons February 20, 20124 comments

If you have ever studied or designed a cascaded integrator-comb (CIC) lowpass filter then surely you've read Eugene Hogenauer's seminal 1981 IEEE paper where he first introduced the CIC filter to the signal processing world [1]. As it turns out, Hogenauer's famous paper was not the first formal document describing and proposing CIC filters. Here's the story.

In the Fall of 1979 Eugene Hogenauer was finalizing his development of the CIC filter, the filter now used in so many multirate signal...

New Papers / Theses Section

Stephane Boucher March 21, 20081 comment

The new 'Papers & Theses' section is now online: idea is to list and organize in one place as many DSP related dissertations (PhD & Masters) and papers/articles as possible.If you are the author of a thesis or paper and would like to have it listed on, please follow these steps:- Make sure that you are allowed to share the document online (copyright).- If you don't already have one, make a 'pdf' copy of your document. ...

New Blog Section!

Stephane Boucher September 19, 20072 comments

By now, chances are you have noticed the new blogs section (you are actually in it right now!).

Following an email I sent to the members of the site, a few weeks ago, asking for dsp engineers willing to blog here, I received around 50 propositions. I have selected an initial set of 10 bloggers (that I will soon introduce into a seperate post) and I am currently in the process of creating their accounts. Markus and Parth have already...

New Discussion Group: DSP & FPGA

Stephane Boucher September 11, 20078 comments

I have just created a new discussion group for engineers implementing DSP functions on FPGAs. The creation of this group has been on my todo list for a long time. If you want to join the group, send a blank email to:

As usual, it should take a few weeks before there are enough members for interesting discussions to get started.