A Fast Real-Time Trapezoidal Rule Integrator

Rick Lyons June 13, 20204 comments

This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.


While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...

Third-Order Distortion of a Digitally-Modulated Signal

Neil Robertson June 9, 2020
Analog designers are always harping about amplifier third-order distortion.  Why?  In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.

In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude.  With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:


A Narrow Bandpass Filter in Octave or Matlab

Paul Lovell June 1, 20206 comments

The design of a very narrow bandpass FIR filter, coded in either Octave or Matlab, can prove challenging if a computationally-efficient  filter is required. This is especially true if the sampling rate is high relative to the filter's center frequency. The most obvious filter design methods, using either window-based or Remez ( Parks-McClellan ) functions, can easily result in filters with many thousands of taps. 

The filter to be described reduces the computational effort (and thus...

Second Order Discrete-Time System Demonstration

Neil Robertson April 1, 20202 comments

Discrete-time systems are remarkable:  the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z).  Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system.  With a discrete-time model, we can then easily compute the time response to any input.  But note that the goal here is as much to...

A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters

Rick Lyons March 26, 202048 comments

This blog discusses the behavior, mathematics, and implementation of cascaded integrator-comb filters.

Cascaded integrator-comb (CIC) digital filters are computationally-efficient implementations of narrowband lowpass filters, and are often embedded in hardware implementations of decimation, interpolation, and delta-sigma converter filtering.

After describing a few applications of CIC filters, this blog introduces their structure and behavior, presents the frequency-domain...

Are DSPs Dead ?

Jeff Brower March 25, 20208 comments
Are DSPs Dead ?

Former Texas Instruments Sr. Fellow Gene Frantz and former TI Fellow Alan Gatherer wrote a 2017 IEEE article about the "death and rebirth" of DSP as a discipline, explaining that now signal processing provides indispensable building blocks in widely popular and lucrative areas such as data science and machine learning. The article implies that DSP will now be taught in university engineering programs as its linear systems and electromagnetics...

Digging into an Audio Signal and the DSP Process Pipeline

Stephen Morris March 9, 20206 comments
In this post, I'll look at the benefits of using multiple perspectives when handling signals.A Pre-existing Audio File

Let's say we have an audio file of interest. Let's load it into Audacity and zoom in a little (using View → Zoom → Zoom In, multiple times). The figure illustrates the audio signal: just a basic single-tone signal.

By continuing to zoom into the signal, we eventually get to the point of seeing individual samples as illustrated below. Notice that I've marked one...

A Simplified Matlab Function for Power Spectral Density

Neil Robertson March 3, 20204 comments

In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2].  Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs).  However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.

In this post, I create a simplified PSD function by putting a...

Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference

Stephane Boucher February 14, 2020

Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.

Chances are you also already know that you have until the end of the month of February to register for free. 

And chances are that you are one of the more than 3000 pro-active engineers who have already registered.

But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet.  You may...

Fractional Delay FIR Filters

Neil Robertson February 9, 202014 comments

Consider the following Finite Impulse Response (FIR) coefficients:

b = [b0 b1 b2 b1 b0]

These coefficients form a 5-tap symmetrical FIR filter having constant group delay [1,2] over 0 to fs/2 of:

D = (ntaps – 1)/2 = 2      samples

For a symmetrical filter with an odd number of taps, the group delay is always an integer number of samples, while for one with an even number of taps, the group delay is always an integer + 0.5 samples.  Can we design a filter...

Design IIR Filters Using Cascaded Biquads

Neil Robertson February 11, 201826 comments

This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads.  We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix.  Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc).  As we’ll see, the cascaded-biquad design is less sensitive to coefficient...

PID Without a PhD

Tim Wescott April 26, 201614 comments

I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.

This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...

Pulse Shaping in Single-Carrier Communication Systems

Eric Jacobsen April 10, 200833 comments

Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...

Polyphase filter / Farrows interpolation

Markus Nentwig September 18, 200714 comments


this article is meant to give a quick overview over polyphase filtering and Farrows interpolation.

A good reference with more depth is for example Fred Harris' paper: http://www.signumconcepts.com/IP_center/paper018.pdf

The task is as follows: Interpolate a band-limited discrete-time signal at a variable offset between samples.In other words:Delay the signal by a given amount with sub-sample accuracy.Both mean the same.

The picture below shows samples (black) representing...

Digital PLL's -- Part 1

Neil Robertson June 7, 201622 comments
1. Introduction

Figure 1.1 is a block diagram of a digital PLL (DPLL).  The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal.  The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance.  The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...

Embedded Toolbox: Programmer's Calculator

Miro Samek June 27, 20178 comments

Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.

I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...

Generating pink noise

Allen Downey January 20, 20161 comment

In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music.  The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple algorithm for generating pink noise, also known as 1/f noise.

The fundamental idea of the algorithm is to add up several sequences of uniform random numbers that get updated at different rates. The first source gets updated at...

Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Jason Sachs November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...

Frequency Dependence in Free Space Propagation

Eric Jacobsen May 14, 20088 comments


It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:

Pr = Pt Gt Gr ( λ / 4πd )2 (1)

where the...

FFT Interpolation Based on FFT Samples: A Detective Story With a Surprise Ending

Rick Lyons April 16, 201840 comments

This blog presents several interesting things I recently learned regarding the estimation of a spectral value located at a frequency lying between previously computed FFT spectral samples. My curiosity about this FFT interpolation process was triggered by reading a spectrum analysis paper written by three astronomers [1].

My fixation on one equation in that paper led to the creation of this blog.


The notion of FFT interpolation is straightforward to describe. That is, for example,...

The Sampling Theorem - An Intuitive Approach

Stephane Boucher January 26, 20151 comment

Scott Kurtz from DSPSoundWare.com has put together a video presentation that aims to help DSPers gain a better intuitive understanding of the Sampling Theorem.   Feel free to have a look and share your thoughts by commenting this blog post.

DSP Related Math: Nice Animated GIFs

Stephane Boucher April 24, 20143 comments

I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts.  I thought there would be some value in aggregating the DSP related gifs on one page.  

The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...

DSPRelated and EmbeddedRelated now on Facebook & I will be at EE Live!

Stephane Boucher February 27, 20148 comments

I have two news to share with you today.

The first one is that I finally created Facebook pages for DSPRelated.com and EmbeddedRelated (DSPRelated page - EmbeddedRelated page). For a long time I didn't feel that this was something that was needed, but it seems that these days more and more people are using their Facebook account to stay updated with their favorite websites. In any event, if you have a Facebook account, I would greatly appreciate if you could use the next 5 seconds to "like"...

Collaborative Writing Experiment: Your Favorite DSP Websites

Stephane Boucher May 30, 2013

You are invited to contribute to the content of this blog post through the magic of Google Docs' real time collaboration feature.

I discovered this tool several months ago when I was looking for a way to coordinate our annual family halloween party (potluck) and avoid the very unpleasant situation of ending up with too much chips and not enough chocolate (first world problem!).  It was amusing to keep an eye on the "food you will bring" document we had created for this and watch...

DSPRelated Finally on Twitter!

Stephane Boucher February 20, 20132 comments


It's been a while since you've heard from me - and there are many reasons why:

1 - I've made a clown of myself (video here)

2 - I've been working on unifying the user management system.  You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info). 

3- I've been working on getting up to speed with social networks and especially Twitter.   I have resisted the idea for a while - at 40...

Two jobs

Stephane Boucher December 5, 201223 comments

For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.

edit - video of the event:

I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...

Do you like the new Comments System?

Stephane Boucher September 19, 20124 comments

I have just finished implementing a new comments system for the blogs.  Do you like it?

Please share your thoughts with me by adding a comment.

I'll wait a few days and make sure it works properly and then I'll port it to the code snippets and papers section.


DSP Papers, Articles, Theses, etc

Stephane Boucher March 17, 20111 comment

As you may already know, there is a 'Papers and Theses' section on DSPRelated:http://www.dsprelated.com/documents.phpThere are hundreds of DSP Related documents (articles, papers, theses, dissertations, etc) scattered all around the web, and the goal with this section is to find and list as many of those documents as possible in one place. There are, at the moment, a little over 100 documents listed, which I believe is only a small subset of what is available out there, and I need your help...

Code Snippets Suggestions

Stephane Boucher January 19, 20115 comments

Despite being only a couple of months old, the Code Snippet section ( DSPRelated.com/code.php ) already contains tens of snippets, thanks to the contributors who have taken the time to share their code. 

But let's not stop here - there is room for several hundreds more snippets before the database can be said to cover a decent portion of the DSP field.  

To keep the momentum going, I will do two things:  

First, I am modifying the rewards program.  Instead of...

Latest DSP Books

Stephane Boucher December 1, 2010

As you may already know, Rick Lyons has just published a new edition of his highly acclaimed book: "Understanding Digital Signal Processing".   This book has been getting very high ratings and positive reviews from the DSP community since the publication of the first edition.  The 3rd edition seems to contain more than enough new material to justify replacing your old copy.

Also of possible interest to you, a new DSP book by C. Britton Rorabaugh titled "