Compute Images/Aliases of CIC Interpolators/Decimators
Cascade-Integrator-Comb (CIC) filters are efficient fixed-point interpolators or decimators. For these filters, all coefficients are equal to 1, and there are no multipliers. They are typically used when a large change in sample rate is needed. This article provides two very simple Matlab functions that can be used to compute the spectral images of CIC interpolators and the aliases of CIC decimators.
1. CIC InterpolatorsFigure 1 shows three interpolate-by-M...
Exploring Human Hearing Range
Human Hearing RangeIn this post, I'll look at an interesting aspect of Audacity – using it to explore the threshold of human hearing. In my book Digital Signal Processing: A Gentle Introduction with Audio Examples, I go into this topic and I include a side note on the amazing hearing range of our canine companions.
Creating a Test Audio FileAudacity allows for the generation of a variety of test signals. If you click the Generate->Tone menu, it looks something like...
The DSP Online Conference - Right Around the Corner!
It is Sunday night as I write this blog post with a few days to go before the virtual doors of the very first DSP Online Conference open..
It all started with a post in the DSPRelated forum about three months ago. We had just had a blast running the 2020 Embedded Online Conference and we thought it could be fun to organize a smaller event dedicated to the DSP community. So my goal with the post in the forum was to see if...
The Zeroing Sine Family of Window Functions
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by introducing a class of well behaved window functions that the author believes to be previously unrecognized. The definition and some characteristics are displayed. The heavy math will come in later articles. This is an introduction to the family, and a very special member of it.
This is one of my longer articles. The bulk of the material is in the front half. The...
Design Square-Root Nyquist Filters
In his book on multirate signal processing, harris presents a nifty technique for designing square-root Nyquist FIR filters with good stopband attenuation [1]. In this post, I describe the method and provide a Matlab function for designing the filters. You can find a Matlab function by harris for designing the filters at [2].
BackgroundSingle-carrier modulation, such as QAM, uses filters to limit the bandwidth of the signal. Figure 1 shows a simplified QAM system block...
Make Hardware Great Again
By now you're aware of the collective angst in the US about 5G. Why is the US not a leader in 5G ? Could that also happen -- indeed, is it happening -- in AI ? If we lead in other areas, why not 5G ? What makes it so hard ?
This hand-wringing has reached the highest levels in US government. Recently the Wall Street Journal reported on a DoJ promoted plan 1 to help Cisco buy Ericsson or Nokia, to give the US a leg up in 5G. This is not a new plan,...
A Fast Real-Time Trapezoidal Rule Integrator
This blog presents a computationally-efficient network for computing real‑time discrete integration using the Trapezoidal Rule.
Background
While studying what is called "N-sample Romberg integration" I noticed that such an integration process requires the computation of many individual smaller‑sized integrations using the Trapezoidal Rule integration method [1]. My goal was to create a computationally‑fast real‑time Trapezoidal Rule integration network to increase the processing...
Third-Order Distortion of a Digitally-Modulated Signal
Analog designers are always harping about amplifier third-order distortion. Why? In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.
In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude. With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:
$$y=...
A Narrow Bandpass Filter in Octave or Matlab
The design of a very narrow bandpass FIR filter, coded in either Octave or Matlab, can prove challenging if a computationally-efficient filter is required. This is especially true if the sampling rate is high relative to the filter's center frequency. The most obvious filter design methods, using either window-based or Remez ( Parks-McClellan ) functions, can easily result in filters with many thousands of taps.
The filter to be described reduces the computational effort (and thus...
Second Order Discrete-Time System Demonstration
Discrete-time systems are remarkable: the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z). Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system. With a discrete-time model, we can then easily compute the time response to any input. But note that the goal here is as much to...
Design IIR Butterworth Filters Using 12 Lines of Code
While there are plenty of canned functions to design Butterworth IIR filters [1], it’s instructive and not that complicated to design them from scratch. You can do it in 12 lines of Matlab code. In this article, we’ll create a Matlab function butter_synth.m to design lowpass Butterworth filters of any order. Here is an example function call for a 5th order filter:
N= 5 % Filter order fc= 10; % Hz cutoff freq fs= 100; % Hz sample freq [b,a]=...A Simplified Matlab Function for Power Spectral Density
In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2]. Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs). However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.
In this post, I create a simplified PSD function by putting a...
Simple Concepts Explained: Fixed-Point
IntroductionMost signal processing intensive applications on FPGA are still implemented relying on integer or fixed-point arithmetic. It is not easy to find the key ideas on quantization, fixed-point and integer arithmetic. In a series of articles, I aim to clarify some concepts and add examples on how things are done in real life. The ideas covered are the result of my professional experience and hands-on projects.
In this article I will present the most fundamental question you...
Fitting a Damped Sine Wave
A damped sine wave is described by
$$ x_{(k)} = A \cdot e^{\alpha \cdot k} \cdot cos(\omega \cdot k + p)\tag{1}$$
with frequency $\omega$ , phase p , initial amplitude A and damping constant $\alpha$ . The $x_{(k)}$ are the samples of the function at equally spaced points in time.
With $x_{(k)}$ given, one often has to find the unknown parameters of the function. This can be achieved for instance with nonlinear approximation or with DFT – methods.
I present a method to find the...
Simplest Calculation of Half-band Filter Coefficients
Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4 [1]*. And it so happens that almost half of the coefficients are zero. The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2. Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.
Here we will compute half-band...
A New Related Site!
We are delighted to announce the launch of the very first new Related site in 15 years! The new site will be dedicated to the trendy and quickly growing field of Machine Learning and will be called - drum roll please - MLRelated.com.
We think MLRelated fits perfectly well within the “Related” family, with:
- the fast growth of TinyML, which is a topic of great interest to the EmbeddedRelated community
- the use of Machine/Deep Learning in Signal Processing applications, which is of...
Interpolation Basics
This article covers interpolation basics, and provides a numerical example of interpolation of a time signal. Figure 1 illustrates what we mean by interpolation. The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts. The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1]. For example, if...
An s-Plane to z-Plane Mapping Example
While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.
Reader, please take a few moments to see if you detect any errors in Figure 1.
...Digital PLL's -- Part 1
1. IntroductionFigure 1.1 is a block diagram of a digital PLL (DPLL). The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal. The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance. The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.
One application of the DPLL is to recover the timing in a digital...
How to Find a Fast Floating-Point atan2 Approximation
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:$$ atan(z) \approx \dfrac{z}{1.0 +...
Design IIR Filters Using Cascaded Biquads
This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads. We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix. Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc). As we’ll see, the cascaded-biquad design is less sensitive to coefficient...
PID Without a PhD
I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.
This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...
Pulse Shaping in Single-Carrier Communication Systems
Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...
Digital PLL's -- Part 1
1. IntroductionFigure 1.1 is a block diagram of a digital PLL (DPLL). The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal. The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance. The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.
One application of the DPLL is to recover the timing in a digital...
Polyphase filter / Farrows interpolation
Hello,
this article is meant to give a quick overview over polyphase filtering and Farrows interpolation.
A good reference with more depth is for example Fred Harris' paper: http://www.signumconcepts.com/IP_center/paper018.pdf
The task is as follows: Interpolate a band-limited discrete-time signal at a variable offset between samples.In other words:Delay the signal by a given amount with sub-sample accuracy.Both mean the same.
The picture below shows samples (black) representing...
Embedded Toolbox: Programmer's Calculator
Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.
I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...
Generating pink noise
In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music. The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple algorithm for generating pink noise, also known as 1/f noise.
The fundamental idea of the algorithm is to add up several sequences of uniform random numbers that get updated at different rates. The first source gets updated at...
FFT Interpolation Based on FFT Samples: A Detective Story With a Surprise Ending
This blog presents several interesting things I recently learned regarding the estimation of a spectral value located at a frequency lying between previously computed FFT spectral samples. My curiosity about this FFT interpolation process was triggered by reading a spectrum analysis paper written by three astronomers [1].
My fixation on one equation in that paper led to the creation of this blog.
Background
The notion of FFT interpolation is straightforward to describe. That is, for example,...
Simplest Calculation of Half-band Filter Coefficients
Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4 [1]*. And it so happens that almost half of the coefficients are zero. The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2. Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.
Here we will compute half-band...
Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine
Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.
One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...
The Sampling Theorem - An Intuitive Approach
Scott Kurtz from DSPSoundWare.com has put together a video presentation that aims to help DSPers gain a better intuitive understanding of the Sampling Theorem. Feel free to have a look and share your thoughts by commenting this blog post.
DSP Related Math: Nice Animated GIFs
I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts. I thought there would be some value in aggregating the DSP related gifs on one page.
The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...DSPRelated and EmbeddedRelated now on Facebook & I will be at EE Live!
I have two news to share with you today.
The first one is that I finally created Facebook pages for DSPRelated.com and EmbeddedRelated (DSPRelated page - EmbeddedRelated page). For a long time I didn't feel that this was something that was needed, but it seems that these days more and more people are using their Facebook account to stay updated with their favorite websites. In any event, if you have a Facebook account, I would greatly appreciate if you could use the next 5 seconds to "like"...
Collaborative Writing Experiment: Your Favorite DSP Websites
You are invited to contribute to the content of this blog post through the magic of Google Docs' real time collaboration feature.
I discovered this tool several months ago when I was looking for a way to coordinate our annual family halloween party (potluck) and avoid the very unpleasant situation of ending up with too much chips and not enough chocolate (first world problem!). It was amusing to keep an eye on the "food you will bring" document we had created for this and watch...
DSPRelated Finally on Twitter!
Hello!
It's been a while since you've heard from me - and there are many reasons why:
1 - I've made a clown of myself (video here)
2 - I've been working on unifying the user management system. You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info).
3- I've been working on getting up to speed with social networks and especially Twitter. I have resisted the idea for a while - at 40...
Two jobs
For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.
edit - video of the event:
I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...
Do you like the new Comments System?
I have just finished implementing a new comments system for the blogs. Do you like it?
Please share your thoughts with me by adding a comment.
I'll wait a few days and make sure it works properly and then I'll port it to the code snippets and papers section.
Thanks!
DSP Papers, Articles, Theses, etc
As you may already know, there is a 'Papers and Theses' section on DSPRelated:http://www.dsprelated.com/documents.phpThere are hundreds of DSP Related documents (articles, papers, theses, dissertations, etc) scattered all around the web, and the goal with this section is to find and list as many of those documents as possible in one place. There are, at the moment, a little over 100 documents listed, which I believe is only a small subset of what is available out there, and I need your help...
Code Snippets Suggestions
Despite being only a couple of months old, the Code Snippet section ( DSPRelated.com/code.php ) already contains tens of snippets, thanks to the contributors who have taken the time to share their code.
But let's not stop here - there is room for several hundreds more snippets before the database can be said to cover a decent portion of the DSP field.
To keep the momentum going, I will do two things:
First, I am modifying the rewards program. Instead of...
Latest DSP Books
As you may already know, Rick Lyons has just published a new edition of his highly acclaimed book: "Understanding Digital Signal Processing". This book has been getting very high ratings and positive reviews from the DSP community since the publication of the first edition. The 3rd edition seems to contain more than enough new material to justify replacing your old copy.
Also of possible interest to you, a new DSP book by C. Britton Rorabaugh titled "