## A Simpler Goertzel Algorithm

In this blog I propose a Goertzel algorithm that is simpler than the version of the Goertzel algorithm that is traditionally presented DSP textbooks. Below I very briefly describe the DSP textbook version of the Goertzel algorithm followed by a description of my proposed simpler algorithm.

The Traditional DSP Textbook Goertzel Algorithm

The so-called Goertzel algorithm is used to efficiently compute a single mth-bin sample of an N-point discrete Fourier transform (DFT) [1-4]. The...

## 60-Hz Noise and Baseline Drift Reduction in ECG Signal Processing

Electrocardiogram (ECG) signals are obtained by monitoring the electrical activity of the human heart for medical diagnostic purposes [1]. This blog describes a very efficient digital filter used to reduce both 60 Hz AC power line noise and unwanted signal baseline drift that often contaminate ECG signals.

PDF_HERE

We'll first describe the ECG noise reduction filter and then examine the filter's performance in a real-world ECG signal filtering example.Proposed ECG Noise Reduction Digital...

## Find Aliased ADC or DAC Harmonics (with animation)

When a sinewave is applied to a data converter (ADC or DAC), device nonlinearities produce harmonics. If a harmonic frequency is greater than the Nyquist frequency, the harmonic appears as an alias. In this case, it is not at once obvious if a given spur is a harmonic, and if so, its order. In this article, we’ll present Matlab code to simulate the data converter nonlinearities and find the harmonic alias frequencies. Note that Analog Devices has an online tool for...

## Adaptive Beamforming is like Squeezing a Water Balloon

Adaptive beamforming was first developed in the 1960s for radar and sonar applications. The main idea is that signals can be captured using multiple sensors and the sensor outputs can be combined to enhance the signals propagating from specific directions and attenuate (null out) signals from other directions. It has grown immensely in recent years as processors have become faster and cheaper. Today, adaptive beamforming applications include smart speakers (like the Amazon Echo),...

## Compute Images/Aliases of CIC Interpolators/Decimators

Cascade-Integrator-Comb (CIC) filters are efficient fixed-point interpolators or decimators. For these filters, all coefficients are equal to 1, and there are no multipliers. They are typically used when a large change in sample rate is needed. This article provides two very simple Matlab functions that can be used to compute the spectral images of CIC interpolators and the aliases of CIC decimators.

1. CIC InterpolatorsFigure 1 shows three interpolate-by-M...

## Exploring Human Hearing Range

Human Hearing RangeIn this post, I'll look at an interesting aspect of Audacity – using it to explore the threshold of human hearing. In my book Digital Signal Processing: A Gentle Introduction with Audio Examples, I go into this topic and I include a side note on the amazing hearing range of our canine companions.

Creating a Test Audio FileAudacity allows for the generation of a variety of test signals. If you click the Generate->Tone menu, it looks something like...

## The DSP Online Conference - Right Around the Corner!

It is Sunday night as I write this blog post with a few days to go before the virtual doors of the very first DSP Online Conference open..

It all started with a post in the DSPRelated forum about three months ago. We had just had a blast running the 2020 Embedded Online Conference and we thought it could be fun to organize a smaller event dedicated to the DSP community. So my goal with the post in the forum was to see if...

## The Zeroing Sine Family of Window Functions

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by introducing a class of well behaved window functions that the author believes to be previously unrecognized. The definition and some characteristics are displayed. The heavy math will come in later articles. This is an introduction to the family, and a very special member of it.

This is one of my longer articles. The bulk of the material is in the front half. The...

## Design Square-Root Nyquist Filters

In his book on multirate signal processing, harris presents a nifty technique for designing square-root Nyquist FIR filters with good stopband attenuation [1]. In this post, I describe the method and provide a Matlab function for designing the filters. You can find a Matlab function by harris for designing the filters at [2].

BackgroundSingle-carrier modulation, such as QAM, uses filters to limit the bandwidth of the signal. Figure 1 shows a simplified QAM system block...

## Make Hardware Great Again

By now you're aware of the collective angst in the US about 5G. Why is the US not a leader in 5G ? Could that also happen -- indeed, is it happening -- in AI ? If we lead in other areas, why not 5G ? What makes it so hard ?

This hand-wringing has reached the highest levels in US government. Recently the Wall Street Journal reported on a DoJ promoted plan 1 to help Cisco buy Ericsson or Nokia, to give the US a leg up in 5G. This is not a new plan,...

## A Simplified Matlab Function for Power Spectral Density

In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2]. Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs). However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.

In this post, I create a simplified PSD function by putting a...

## The Power Spectrum

Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis. However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain. This post shows how to calculate an accurate power spectrum.

Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...

## Sampling bandpass signals

Sampling bandpass signals 1.1 IntroductionIt is known [1], [3] that bandpass signals can be sampled with a sampling frequency which is lower than the sampling frequency according to the sampling theorem.

Fig. 1 shows an example of how the spectrum of a bandpass signal sampled with $f_s$ (Fig. 1a) arises in the baseband with $−f_s / 2 ≤ f < f_s/2$. The bandpass signal is assumed to have a center frequency $f_c = (f_{max} + f_{min})/2$ and bandwidth $\Delta f...

## The Exponential Nature of the Complex Unit Circle

IntroductionThis is an article to hopefully give an understanding to Euler's magnificent equation:

$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$

This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.

Complex...## Polyphase Filters and Filterbanks

ALONG CAME POLY

Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling filterbanks using the same theories.

This post will walk through a reference implementation of both the downsampling polyphase filter and a downsampling polyphase filterbank using scipy, numpy, matplotlib, and python. It should also highlight some of...

## Evaluate Window Functions for the Discrete Fourier Transform

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum. For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT. Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3]. There are many different window functions and each produces a different approximation of the spectrum. In this post, we’ll present Matlab code that...

## IIR Bandpass Filters Using Cascaded Biquads

In an earlier post [1], we implemented lowpass IIR filters using a cascade of second-order IIR filters, or biquads.

This post provides a Matlab function to do the same for Butterworth bandpass IIR filters. Compared to conventional implementations, bandpass filters based on biquads are less sensitive to coefficient quantization [2]. This becomes important when designing narrowband filters.

A biquad section block diagram using the Direct Form II structure [3,4] is...

## A New Related Site!

We are delighted to announce the launch of the very first new Related site in 15 years! The new site will be dedicated to the trendy and quickly growing field of Machine Learning and will be called - drum roll please - MLRelated.com.

We think MLRelated fits perfectly well within the “Related” family, with:

- the fast growth of TinyML, which is a topic of great interest to the EmbeddedRelated community
- the use of Machine/Deep Learning in Signal Processing applications, which is of...

## Fractional Delay FIR Filters

Consider the following Finite Impulse Response (FIR) coefficients:

b = [b0 b1 b2 b1 b0]

These coefficients form a 5-tap symmetrical FIR filter having constant group delay [1,2] over 0 to fs/2 of:

D = (ntaps – 1)/2 = 2 samples

For a symmetrical filter with an odd number of taps, the group delay is always an integer number of samples, while for one with an even number of taps, the group delay is always an integer + 0.5 samples. Can we design a filter...

## An s-Plane to z-Plane Mapping Example

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.

...## Back from Embedded World 2019 - Funny Stories and Live-Streaming Woes

When the idea of live-streaming parts of Embedded World came to me, I got so excited that I knew I had to make it happen. I perceived the opportunity as a win-win-win-win.

- win #1 - Engineers who could not make it to Embedded World would be able to sample the huge event,
- win #2 - The organisation behind EW would benefit from the extra exposure
- win #3 - Lecturers and vendors who would be live-streamed would reach a (much) larger audience
- win #4 - I would get...

## Digital PLL's -- Part 1

1. IntroductionFigure 1.1 is a block diagram of a digital PLL (DPLL). The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal. The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance. The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...

## PID Without a PhD

I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.

This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...

## Feedback Controllers - Making Hardware with Firmware. Part 10. DSP/FPGAs Behaving Irrationally

This article will look at a design approach for feedback controllers featuring low-latency "irrational" characteristics to enable the creation of physical components such as transmission lines. Some thought will also be given as to the capabilities of the currently utilized Intel Cyclone V, the new Cyclone 10 GX and the upcoming Xilinx Versal floating-point FPGAs/ACAPs.

Fig 1. Making a Transmission Line, with the Circuit Emulator

Additional...

## Pulse Shaping in Single-Carrier Communication Systems

Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...

## Polyphase filter / Farrows interpolation

Hello,

this article is meant to give a quick overview over polyphase filtering and Farrows interpolation.

A good reference with more depth is for example Fred Harris' paper: http://www.signumconcepts.com/IP_center/paper018.pdf

The task is as follows: Interpolate a band-limited discrete-time signal at a variable offset between samples.In other words:Delay the signal by a given amount with sub-sample accuracy.Both mean the same.

The picture below shows samples (black) representing...

## Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference

Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.

Chances are you also already know that you have until the end of the month of February to register for free.

And chances are that you are one of the more than 3000 pro-active engineers who have already registered.

But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet. You may...

## Simplest Calculation of Half-band Filter Coefficients

Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4 [1]*. And it so happens that almost half of the coefficients are zero. The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2. Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.

Here we will compute half-band...

## Generating pink noise

In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music. The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple algorithm for generating pink noise, also known as 1/f noise.

The fundamental idea of the algorithm is to add up several sequences of uniform random numbers that get updated at different rates. The first source gets updated at...

## FFT Interpolation Based on FFT Samples: A Detective Story With a Surprise Ending

This blog presents several interesting things I recently learned regarding the estimation of a spectral value located at a frequency lying between previously computed FFT spectral samples. My curiosity about this FFT interpolation process was triggered by reading a spectrum analysis paper written by three astronomers [1].

My fixation on one equation in that paper led to the creation of this blog.

Background

The notion of FFT interpolation is straightforward to describe. That is, for example,...

## Premium Forum?

Chances are that by now, you have had a chance to browse the new design of the *related site that I published several weeks ago. I have been working for several months on this and I must admit that I am very happy with the results. This new design will serve as a base for many new exciting developments. I would love to hear your comments/suggestions if you have any, please use the comments system at the bottom of this page.

First on my list would be to build and launch a new forum...

## The Sampling Theorem - An Intuitive Approach

Scott Kurtz from DSPSoundWare.com has put together a video presentation that aims to help DSPers gain a better intuitive understanding of the Sampling Theorem. Feel free to have a look and share your thoughts by commenting this blog post.

## DSP Related Math: Nice Animated GIFs

I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts. I thought there would be some value in aggregating the DSP related gifs on one page.

The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...## DSPRelated and EmbeddedRelated now on Facebook & I will be at EE Live!

I have two news to share with you today.

The first one is that I finally created Facebook pages for DSPRelated.com and EmbeddedRelated (DSPRelated page - EmbeddedRelated page). For a long time I didn't feel that this was something that was needed, but it seems that these days more and more people are using their Facebook account to stay updated with their favorite websites. In any event, if you have a Facebook account, I would greatly appreciate if you could use the next 5 seconds to "like"...

## Collaborative Writing Experiment: Your Favorite DSP Websites

You are invited to contribute to the content of this blog post through the magic of Google Docs' real time collaboration feature.

I discovered this tool several months ago when I was looking for a way to coordinate our annual family halloween party (potluck) and avoid the very unpleasant situation of ending up with too much chips and not enough chocolate (first world problem!). It was amusing to keep an eye on the "food you will bring" document we had created for this and watch...

## DSPRelated Finally on Twitter!

Hello!

It's been a while since you've heard from me - and there are many reasons why:

1 - I've made a clown of myself (video here)

2 - I've been working on unifying the user management system. You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info).

3- I've been working on getting up to speed with social networks and especially Twitter. I have resisted the idea for a while - at 40...

## Two jobs

For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.

edit - video of the event:

I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...

## Do you like the new Comments System?

I have just finished implementing a new comments system for the blogs. Do you like it?

Please share your thoughts with me by adding a comment.

I'll wait a few days and make sure it works properly and then I'll port it to the code snippets and papers section.

Thanks!

## DSP Papers, Articles, Theses, etc

As you may already know, there is a 'Papers and Theses' section on DSPRelated:http://www.dsprelated.com/documents.phpThere are hundreds of DSP Related documents (articles, papers, theses, dissertations, etc) scattered all around the web, and the goal with this section is to find and list as many of those documents as possible in one place. There are, at the moment, a little over 100 documents listed, which I believe is only a small subset of what is available out there, and I need your help...

## Code Snippets Suggestions

Despite being only a couple of months old, the Code Snippet section ( DSPRelated.com/code.php ) already contains tens of snippets, thanks to the contributors who have taken the time to share their code.

But let's not stop here - there is room for several hundreds more snippets before the database can be said to cover a decent portion of the DSP field.

To keep the momentum going, I will do two things:

First, I am modifying the rewards program. Instead of...