In Search of The Fourth Wave
Last year I participated in the first DSP Related online conference, where I presented a short talk called "In Search of The Fourth Wave". It's based on a small mystery I encountered when I was working on Think DSP. As you might know:
A sawtooth wave contains harmonics at integer multiples of the fundamental frequency, and their amplitudes drop off in proportion to 1/f. A square wave contains only odd multiples of the fundamental, but they also drop off...Sampling bandpass signals
Sampling bandpass signals 1.1 IntroductionIt is known [1], [3] that bandpass signals can be sampled with a sampling frequency which is lower than the sampling frequency according to the sampling theorem.
Fig. 1 shows an example of how the spectrum of a bandpass signal sampled with $f_s$ (Fig. 1a) arises in the baseband with $−f_s / 2 ≤ f < f_s/2$. The bandpass signal is assumed to have a center frequency $f_c = (f_{max} + f_{min})/2$ and bandwidth $\Delta f...
Digital Filter Instructions from IKEA?
Swedish “Bygglek” = build and play. Swedish “Bygglek” = build and play.
Swedish “Bygglek” = build and play. Swedish “Bygglek” = build and play.
Swedish “Bygglek” = build and play. Swedish “Bygglek” = build and play.
Swedish “Bygglek” = build and play. Swedish “Bygglek” = build and play.
Swedish “Bygglek” = build and play. Swedish “Bygglek” = build and...
Simulink-Simulation of SSB demodulation
≥≥≥ Simulink-Simulation of SSB demodulation or modulation from the article “Understanding the ‘Phasing Method’ of Single Sideband Demodulation” by Richard Lyons Josef HoffmannThe article “Understanding the ‘Phasing Method’ of Single Sideband Demodulation” by Richard Lyons is a very good description of this topic. The block representation from the figures are clear and easy to understand. They are predestined for a simulation in Simulink. The simulation can help...
Setting Carrier to Noise Ratio in Simulations
When simulating digital receivers, we often want to check performance with added Gaussian noise. In this article, I’ll derive the simple equations for the rms noise level needed to produce a desired carrier to noise ratio (CNR or C/N). I also provide a short Matlab function to generate a noise vector of the desired level for a given signal vector.
Definition of C/NThe Carrier to noise ratio is defined as the ratio of average signal power to noise power for a modulated...
An Efficient Full-Band Sliding DFT Spectrum Analyzer
In this blog I present two computationally efficient full-band discrete Fourier transform (DFT) networks that compute the 0th bin and all the positive-frequency bin outputs for an N-point DFT in real-time on a sample-by-sample basis.
An Even-N Spectrum Analyzer
The full-band sliding DFT (SDFT) spectrum analyzer network, where the DFT size N is an even integer, is shown in Figure 1(a). The x[n] input sequence is restricted to be real-only valued samples. Notice that the only real parts of...
Update to a Narrow Bandpass Filter in Octave or Matlab
Following my earlier blog post (June 2020) featuring a Narrow Bandpass Filter, I’ve had some useful feedback and suggestions. This has inspired me to come up with an updated version, incorporating the following changes compared to the earlier one :
- Simpler code in Octave or Matlab
- Float32 precision replaces float64
- Faster processing by a factor of at least 4 times
- Easier setup of input parameters
- Normalized signal output level
A new experimental version in...
Add a Power Marker to a Power Spectral Density (PSD) Plot
Perhaps we should call most Power Spectral Density (PSD) calculations relative PSD, because usually we don’t have to worry about absolute power levels. However, for cases (e.g., measurements or simulations) where we are concerned with absolute power, it would be nice to be able to display it on a PSD plot. Unfortunately, you can’t read the power directly from the plot. For example, the plotted spectral peak of a narrowband signal, such as a sinewave, is lower than the...
A Simpler Goertzel Algorithm
In this blog I propose a Goertzel algorithm that is simpler than the version of the Goertzel algorithm that is traditionally presented DSP textbooks. Below I very briefly describe the DSP textbook version of the Goertzel algorithm followed by a description of my proposed simpler algorithm.
The Traditional DSP Textbook Goertzel Algorithm
The so-called Goertzel algorithm is used to efficiently compute a single mth-bin sample of an N-point discrete Fourier transform (DFT) [1-4]. The...
60-Hz Noise and Baseline Drift Reduction in ECG Signal Processing
Electrocardiogram (ECG) signals are obtained by monitoring the electrical activity of the human heart for medical diagnostic purposes [1]. This blog describes a very efficient digital filter used to reduce both 60 Hz AC power line noise and unwanted signal baseline drift that often contaminate ECG signals.
PDF_HERE
We'll first describe the ECG noise reduction filter and then examine the filter's performance in a real-world ECG signal filtering example.Proposed ECG Noise Reduction Digital...
Digital PLL's -- Part 1
1. IntroductionFigure 1.1 is a block diagram of a digital PLL (DPLL). The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal. The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance. The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.
One application of the DPLL is to recover the timing in a digital...
The Exponential Nature of the Complex Unit Circle
IntroductionThis is an article to hopefully give an understanding to Euler's magnificent equation:
$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$
This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.
Complex...Frequency Formula for a Pure Complex Tone in a DTFT
The analytic formula for calculating the frequency of a pure complex tone from the bin values of a rectangularly windowed Discrete Time Fourier Transform (DTFT) is derived. Unlike the corresponding Discrete Fourier Transform (DFT) case, there is no extra degree of freedom and only one solution is possible.
The Power Spectrum
Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis. However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain. This post shows how to calculate an accurate power spectrum.
Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...
Phase or Frequency Shifter Using a Hilbert Transformer
In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter. In either case, the input is a real signal and the output is a real signal. We’ll use some simple Matlab code to simulate these systems. After that, we’ll go into a little more detail on Hilbert transformer theory and design.
Phase ShifterA conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...
Algebra's Laws of Powers and Roots: Handle With Care
Recently, for entertainment, I tried to solve a puzzling algebra problem featured on YouTube [1]. In due course I learned that algebra’s $$(a^x)^y=a^{xy}\qquad\qquad\qquad\qquad\qquad(1)$$
Law of Powers identity is not always valid (not always true) if variable a is real and exponents x and y are complex-valued.
The fact that Eq. (1) can’t reliably be used with complex x and y exponents surprised me. And then I thought, “Humm, …what other of algebra’s identities may also...
A Simplified Matlab Function for Power Spectral Density
In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2]. Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs). However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.
In this post, I create a simplified PSD function by putting a...
Decimators Using Cascaded Multiplierless Half-band Filters
In my last post, I provided coefficients for several multiplierless half-band FIR filters. In the comment section, Rick Lyons mentioned that such filters would be useful in a multi-stage decimator. For such an application, any subsequent multipliers save on resources, since they operate at a fraction of the maximum sample frequency. We’ll examine the frequency response and aliasing of a multiplierless decimate-by-8 cascade in this article, and we’ll also discuss an interpolator cascade using the same half-band filters.
The DFT Magnitude of a Real-valued Cosine Sequence
This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.
To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...
Polyphase Filters and Filterbanks
ALONG CAME POLY
Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling filterbanks using the same theories.
This post will walk through a reference implementation of both the downsampling polyphase filter and a downsampling polyphase filterbank using scipy, numpy, matplotlib, and python. It should also highlight some of...
Music/Audio Signal Processing
Greetings,
This is my blog from the point of view of a music/audio DSP research engineer / educator. It is informal and largely nontechnical because nearly everything I have to say about signal processing is (or will be) somewhere in my four-book series: Mathematics of DFT with Audio Applications, Introduction to Digital Filters, Physical Audio Signal Processing and
Feedback Controllers - Making Hardware with Firmware. Part 10. DSP/FPGAs Behaving Irrationally
This article will look at a design approach for feedback controllers featuring low-latency "irrational" characteristics to enable the creation of physical components such as transmission lines. Some thought will also be given as to the capabilities of the currently utilized Intel Cyclone V, the new Cyclone 10 GX and the upcoming Xilinx Versal floating-point FPGAs/ACAPs.
Fig 1. Making a Transmission Line, with the Circuit Emulator
Additional...
Digital PLL's -- Part 1
1. IntroductionFigure 1.1 is a block diagram of a digital PLL (DPLL). The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal. The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance. The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.
One application of the DPLL is to recover the timing in a digital...
Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference
Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.
Chances are you also already know that you have until the end of the month of February to register for free.
And chances are that you are one of the more than 3000 pro-active engineers who have already registered.
But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet. You may...
Polyphase filter / Farrows interpolation
Hello,
this article is meant to give a quick overview over polyphase filtering and Farrows interpolation.
A good reference with more depth is for example Fred Harris' paper: http://www.signumconcepts.com/IP_center/paper018.pdf
The task is as follows: Interpolate a band-limited discrete-time signal at a variable offset between samples.In other words:Delay the signal by a given amount with sub-sample accuracy.Both mean the same.
The picture below shows samples (black) representing...
PID Without a PhD
I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.
This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...
Simplest Calculation of Half-band Filter Coefficients
Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4 [1]*. And it so happens that almost half of the coefficients are zero. The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2. Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.
Here we will compute half-band...
Pulse Shaping in Single-Carrier Communication Systems
Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...
Plotting Discrete-Time Signals
A discrete-time sinusoid can have frequency up to just shy of half the sample frequency. But if you try to plot the sinusoid, the result is not always recognizable. For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine. But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots. We typically want the plot of a...
FFT Interpolation Based on FFT Samples: A Detective Story With a Surprise Ending
This blog presents several interesting things I recently learned regarding the estimation of a spectral value located at a frequency lying between previously computed FFT spectral samples. My curiosity about this FFT interpolation process was triggered by reading a spectrum analysis paper written by three astronomers [1].
My fixation on one equation in that paper led to the creation of this blog.
Background
The notion of FFT interpolation is straightforward to describe. That is, for example,...
Recruiting New Bloggers!
Previous calls for bloggers have been very successful in recruiting some great communicators - Rick Lyons, Jason Sachs, Victor Yurkovsky, Mike Silva, Markus Nentwig, Gene Breniman, Stephen Friederichs,
Premium Forum?
Chances are that by now, you have had a chance to browse the new design of the *related site that I published several weeks ago. I have been working for several months on this and I must admit that I am very happy with the results. This new design will serve as a base for many new exciting developments. I would love to hear your comments/suggestions if you have any, please use the comments system at the bottom of this page.
First on my list would be to build and launch a new forum...
The Sampling Theorem - An Intuitive Approach
Scott Kurtz from DSPSoundWare.com has put together a video presentation that aims to help DSPers gain a better intuitive understanding of the Sampling Theorem. Feel free to have a look and share your thoughts by commenting this blog post.
DSP Related Math: Nice Animated GIFs
I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts. I thought there would be some value in aggregating the DSP related gifs on one page.
The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...DSPRelated and EmbeddedRelated now on Facebook & I will be at EE Live!
I have two news to share with you today.
The first one is that I finally created Facebook pages for DSPRelated.com and EmbeddedRelated (DSPRelated page - EmbeddedRelated page). For a long time I didn't feel that this was something that was needed, but it seems that these days more and more people are using their Facebook account to stay updated with their favorite websites. In any event, if you have a Facebook account, I would greatly appreciate if you could use the next 5 seconds to "like"...
Collaborative Writing Experiment: Your Favorite DSP Websites
You are invited to contribute to the content of this blog post through the magic of Google Docs' real time collaboration feature.
I discovered this tool several months ago when I was looking for a way to coordinate our annual family halloween party (potluck) and avoid the very unpleasant situation of ending up with too much chips and not enough chocolate (first world problem!). It was amusing to keep an eye on the "food you will bring" document we had created for this and watch...
DSPRelated Finally on Twitter!
Hello!
It's been a while since you've heard from me - and there are many reasons why:
1 - I've made a clown of myself (video here)
2 - I've been working on unifying the user management system. You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info).
3- I've been working on getting up to speed with social networks and especially Twitter. I have resisted the idea for a while - at 40...
Two jobs
For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.
edit - video of the event:
I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...
Do you like the new Comments System?
I have just finished implementing a new comments system for the blogs. Do you like it?
Please share your thoughts with me by adding a comment.
I'll wait a few days and make sure it works properly and then I'll port it to the code snippets and papers section.
Thanks!
DSP Papers, Articles, Theses, etc
As you may already know, there is a 'Papers and Theses' section on DSPRelated:http://www.dsprelated.com/documents.phpThere are hundreds of DSP Related documents (articles, papers, theses, dissertations, etc) scattered all around the web, and the goal with this section is to find and list as many of those documents as possible in one place. There are, at the moment, a little over 100 documents listed, which I believe is only a small subset of what is available out there, and I need your help...