Design a DAC sinx/x Corrector

Neil Robertson July 22, 20187 comments

This post provides a Matlab function that designs linear-phase FIR sinx/x correctors.  It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.

A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process.  In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses.  These are converted by the DAC into contiguous pulses...


Off Topic: Refraction in a Varying Medium

Cedron Dawg July 11, 2018
Introduction

This article is another digression from a better understanding of the DFT. In fact, it is a digression from DSP altogether. However, since many of the readers here are Electrical Engineers and other folks who are very scientifically minded, I hope this article is of interest. A differential vector equation is derived for the trajectory of a point particle in a field of varying index of refraction. This applies to light, of course, but since it is a purely theoretical...


Feedback Controllers - Making Hardware with Firmware. Part 9. Closing the low-latency loop

Steve Maslen July 9, 2018

It's time to put together the DSP and feedback control sciences, the evaluation electronics, the Intel Cyclone floating-point FPGA algorithms and the built-in control loop test-bed and evaluate some example designs. We will be counting the nanoseconds and looking for textbook performance in the creation of emulated hardware circuits. Along the way, there is a printed circuit board (PCB) issue to solve using DSP.    

Fig 1. The evaluation platform

Additional design...


Project update-2 : Digital Filter Blocks in MyHDL and their integration in pyFDA

Sriyash Caculo July 9, 2018

This is an exciting update in the sense that it demonstrates a working model of one important aspect of the project: The integration or ‘glue’ between and Pyfda and MyHDL filter blocks. 

So, why do we need to integrate and how do we go about it?

As discussed in earlier posts, the idea is to provide a workflow in Pyfda that automates the process of Implementing a fixpoint filter in VHDL / Verilog, and verify the correct performance in a digital design environment. MyHDL based...


Project update-1 : Digital Filter Blocks in MyHDL and their integration in pyFDA

Sriyash Caculo June 22, 2018

This blog post presents the progress made up to week 5 in my GSoC project “Digital Filter blocks and their integration in PyFDA”. Progress was made in two areas of the project.

  • Implementation of filter blocks in MyHDL
  • Design of interface between filter blocks and PyFDA

This post will primarily discuss filter block implementation. The interface will be discussed in a later post once further progress is made.

Direct form-I FIR filter

The equation specifies the direct form I...


Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

Jason Sachs June 19, 2018

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.

This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...


Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction

Jason Sachs June 12, 2018

Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.

This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.

Ernie, You Have a Banana in Your Ear

I have had a really really tough time writing this article. I like the...


Who else is going to Sensors Expo in San Jose? Looking for roommate(s)!

Stephane Boucher May 29, 20186 comments

This will be my first time attending this show and I must say that I am excited. I am bringing with me my cameras and other video equipment with the intention to capture as much footage as possible and produce a (hopefully) fun to watch 'highlights' video. I will also try to film as many demos as possible and share them with you.

I enjoy going to shows like this one as it gives me the opportunity to get out of my home-office (from where I manage and run the *Related sites) and actually...


Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

Neil Robertson May 27, 201823 comments

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA.  This situation is shown in Figure 1.  Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2.  This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1].  In that PLL, we...


Project introduction: Digital Filter Blocks in MyHDL and their integration in pyFDA

Sriyash Caculo May 25, 20184 comments

Hi everyone! After a lot of hesitation and several failed attempts, I have finally entered the world of blogging. A little about myself : My name is Sriyash Caculo and I’m a third year undergrad student at BITS Pilani K.K. Birla Goa Campus  pursuing a major in Electronics and Instrumentation engineering. Being an electronics engineer, I developed an interest in Digital Signal Processing and its implementation on hardware.

This blog-post is the first of many to come for the...


Linear-phase DC Removal Filter

Rick Lyons March 30, 200823 comments

This blog describes several DC removal networks that might be of interest to the dsprelated.com readers.

Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a time-domain sequence [1]. Discussed in that thread was the notion of removing a signal's DC bias by subtracting the signal's moving average from that signal, as shown in Figure 1(a).

Figure 1.

At first I thought...


Frequency-Domain Periodicity and the Discrete Fourier Transform

Eric Jacobsen August 6, 2012

Introduction

Some of the better understood aspects of time-sampled systems are the limitations and requirements imposed by the Nyquist sampling theorem [1]. Somewhat less understood is the periodic nature of the spectra of sampled signals. This article provides some insights into sampling that not only explain the periodic nature of the sampled spectrum, but aliasing, bandlimited sampling, and the so-called "super-Nyquist" or IF sampling. The approaches taken here include both mathematical...


The Exponential Nature of the Complex Unit Circle

Cedron Dawg March 10, 20152 comments
Introduction

This is an article to hopefully give an understanding to Euler's magnificent equation:

$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$

This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.

Complex...

Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

Rick Lyons December 14, 201110 comments

There are two code snippets associated with this blog post:

Flat-Top Windowing Function for the Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

and

Testing the Flat-Top Windowing Function

This blog discusses an accurate method of estimating time-domain sinewave peak amplitudes based on fast Fourier transform (FFT) data. Such an operation sounds simple, but the scalloping loss characteristic of FFTs complicates the process. We eliminate that complication by...


How to Find a Fast Floating-Point atan2 Approximation

Nic Taylor May 26, 201711 comments
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:

$$ atan(z) \approx \dfrac{z}{1.0 +...


Oscilloscope Dreams

Jason Sachs January 14, 20125 comments

My coworkers and I recently needed a new oscilloscope. I thought I would share some of the features I look for when purchasing one.

When I was in college in the early 1990's, our oscilloscopes looked like this:

Now the cathode ray tubes have almost all been replaced by digital storage scopes with color LCD screens, and they look like these:

Oscilloscopes are basically just fancy expensive boxes for graphing voltage vs. time. They span a wide range of features and prices:...


Computing the Group Delay of a Filter

Rick Lyons November 19, 200817 comments

I just learned a new method (new to me at least) for computing the group delay of digital filters. In the event this process turns out to be interesting to my readers, this blog describes the method. Let's start with a bit of algebra so that you'll know I'm not making all of this up.

Assume we have the N-sample h(n) impulse response of a digital filter, with n being our time-domain index, and that we represent the filter's discrete-time Fourier transform (DTFT), H(ω), in polar form...


Noise shaping

Markus Nentwig December 9, 20121 comment

Keywords: Quantization noise; noise shaping

A brief introduction to noise shaping, with firm resolve not to miss the forest for the trees. We may still stumble over some assorted roots. Matlab example code is included.

Quantization

Fig. 1 shows a digital signal that is reduced to a lower bit width, for example a 16 bit signal being sent to a 12 bit digital-to-analog converter. Rounding to the nearest output value is obviously the best that can be done to minimize the error of each...


TCP/IP interface (Matlab/Octave)

Markus Nentwig June 17, 201210 comments

Communicate with measurement instruments via Ethernet (no-toolbox-Matlab or Octave)

Purpose

Measurement automation is digital signal processing in a wider sense: Getting a digital signal from an analog world usually involves some measurement instruments, for example a spectrum analyzer. Modern instruments, and also many off-the-shelf prototyping boards such as FPGA cards [1] or microcontrollers [2] are able to communicate via Ethernet. Here, I provide some basic mex-functions (compiled C...


Optimizing the Half-band Filters in Multistage Decimation and Interpolation

Rick Lyons January 4, 201616 comments

This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.

Figure 1: Multistage decimation and interpolation using half-band filters.

Multistage Decimation – A Very Brief Review

Figure 2(a) depicts the process of decimation by an integer factor D. That...


DSP Related Math: Nice Animated GIFs

Stephane Boucher April 24, 20143 comments

I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts.  I thought there would be some value in aggregating the DSP related gifs on one page.  

The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...

DSPRelated and EmbeddedRelated now on Facebook & I will be at EE Live!

Stephane Boucher February 27, 20148 comments

I have two news to share with you today.

The first one is that I finally created Facebook pages for DSPRelated.com and EmbeddedRelated (DSPRelated page - EmbeddedRelated page). For a long time I didn't feel that this was something that was needed, but it seems that these days more and more people are using their Facebook account to stay updated with their favorite websites. In any event, if you have a Facebook account, I would greatly appreciate if you could use the next 5 seconds to "like"...


Collaborative Writing Experiment: Your Favorite DSP Websites

Stephane Boucher May 30, 2013

You are invited to contribute to the content of this blog post through the magic of Google Docs' real time collaboration feature.

I discovered this tool several months ago when I was looking for a way to coordinate our annual family halloween party (potluck) and avoid the very unpleasant situation of ending up with too much chips and not enough chocolate (first world problem!).  It was amusing to keep an eye on the "food you will bring" document we had created for this and watch...


DSPRelated Finally on Twitter!

Stephane Boucher February 20, 20132 comments

Hello!

It's been a while since you've heard from me - and there are many reasons why:

1 - I've made a clown of myself (video here)

2 - I've been working on unifying the user management system.  You can now participate to the three related sites (DSPRelated, FPGARelated and EmbeddedRelated) with only one account (same login info). 

3- I've been working on getting up to speed with social networks and especially Twitter.   I have resisted the idea for a while - at 40...


Two jobs

Stephane Boucher December 5, 201223 comments

For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.

edit - video of the event:

I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...


Do you like the new Comments System?

Stephane Boucher September 19, 20124 comments

I have just finished implementing a new comments system for the blogs.  Do you like it?

Please share your thoughts with me by adding a comment.

I'll wait a few days and make sure it works properly and then I'll port it to the code snippets and papers section.

Thanks!


DSP Papers, Articles, Theses, etc

Stephane Boucher March 17, 20111 comment

As you may already know, there is a 'Papers and Theses' section on DSPRelated:http://www.dsprelated.com/documents.phpThere are hundreds of DSP Related documents (articles, papers, theses, dissertations, etc) scattered all around the web, and the goal with this section is to find and list as many of those documents as possible in one place. There are, at the moment, a little over 100 documents listed, which I believe is only a small subset of what is available out there, and I need your help...


Code Snippets Suggestions

Stephane Boucher January 19, 20115 comments

Despite being only a couple of months old, the Code Snippet section ( DSPRelated.com/code.php ) already contains tens of snippets, thanks to the contributors who have taken the time to share their code. 

But let's not stop here - there is room for several hundreds more snippets before the database can be said to cover a decent portion of the DSP field.  

To keep the momentum going, I will do two things:  

First, I am modifying the rewards program.  Instead of...


Latest DSP Books

Stephane Boucher December 1, 2010

As you may already know, Rick Lyons has just published a new edition of his highly acclaimed book: "Understanding Digital Signal Processing".   This book has been getting very high ratings and positive reviews from the DSP community since the publication of the first edition.  The 3rd edition seems to contain more than enough new material to justify replacing your old copy.

Also of possible interest to you, a new DSP book by C. Britton Rorabaugh titled "


Code Snippets Section Now LIVE

Stephane Boucher November 2, 20101 comment

The new code sharing section is now live and can be accessed HERE.  

Please take a few minutes to rate and/or comment the snippets that you have the expertise to judge.

If you think of some code snippets that you would like to share with the DSP community, please apply to become a contributor HERE.

If you are not aware of the reward program for contributors, your can learn about it HERE.

As always, your comments and suggestions are...