Digital PLL's -- Part 1

Neil Robertson June 7, 20167 comments
1. Introduction

Figure 1.1 is a block diagram of a digital PLL (DPLL).  The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal.  The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance.  The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.

One application of the DPLL is to recover the timing in a digital...


Decimator Image Response

Neil Robertson May 24, 20164 comments

Note:  this is an improved version of a post I made to the dsp forum a few weeks ago.

This article presents a way to compute and plot the image response of a decimator.  I’m defining the image response as the unwanted spectrum of the impulse response after downsampling, relative to the desired passband response. 

Consider a decimate-by-4 filter with fs= 4 Hz, to which we apply the signal spectrum shown in Figure 1.  The desired signal is the CW component at 0.22 Hz,...


Peak to Average Power Ratio and CCDF

Neil Robertson May 17, 20162 comments

Peak to Average Power Ratio (PAPR) is often used to characterize digitally modulated signals.  One example application is setting the level of the signal in a digital modulator.  Knowing PAPR allows setting the average power to a level that is just low enough to minimize clipping.

However, for a random signal, PAPR is a statistical quantity.  We have to ask, what is the probability of a given peak power?  Then we can decide where to set the average...


Filter a Rectangular Pulse with no Ringing

Neil Robertson May 12, 201610 comments

To filter a rectangular pulse without any ringing, there is only one requirement on the filter coefficients:  they must all be positive.  However, if we want the leading and trailing edge of the pulse to be symmetrical, then the coefficients must be symmetrical.  What we are describing is basically a window function.

Consider a rectangular pulse 32 samples long with fs = 1 kHz.  Here is the Matlab code to generate the pulse:

N= 64; fs= 1000; % Hz sample...

Data Types for Control & DSP

Tim Wescott April 27, 20166 comments

There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.

I recently posted an entry on PID control. In that article I glossed over the data types used by showing "double" in all of my example code.  Numerically, this should work for most control problems, but it can be an extravagant use of processor resources.  There ought to be a better way to determine what precision you need...


PID Without a PhD

Tim Wescott April 26, 201611 comments

I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.

This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...


Digital Envelope Detection: The Good, the Bad, and the Ugly

Rick Lyons April 3, 20168 comments

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...


Harmonic Notch Filter

Mike March 28, 201614 comments

My basement is covered with power lines and florescent lights which makes collecting ECG and EEG data  rather difficult due to the 60 cycle hum.  I found the following notch filter to work very well at eliminating the background signal without effecting the highly amplified signals I was looking for. 

The notch filter is based on the a transfer function with the form $$H(z)=\frac{1}{2}(1+A(z))$$ where A(z) is an all pass filter. The original paper [1] describes a method to...


A Useful Source of Signal Processing Information

Rick Lyons March 23, 20168 comments

I just discovered a useful web-based source of signal processing information that was new to me. I thought I'd share what I learned with the subscribers here on DSPRelated.com.

The Home page of the web site that I found doesn't look at all like it would be useful to us DSP fanatics. But if you enter some signal processing topic of interest, say, "FM demodulation" (without the quotation marks) into the 'Search' box at the top of the web page

and click the red 'SEARCH...


3 Good News

Stephane Boucher March 9, 20161 comment
Good News #1

Last week, I announced a new and ambitious reward program that will be funded by the new Vendors Directory.

This week, I am happy to announce that we have our firsts two sponsors!  Quantum Leaps & Abelon Systems have agreed to pay the sponsorship fee to be listed in the new Vendors Directory.  Because of their support, there is now some money in the reward pool ($1,000) and enough to pay for the firsts 500 'beers' awarded.  Please...


Python scipy.signal IIR Filter Design Cont.

Christopher Felton June 19, 20127 comments

In the previous post the Python scipy.signal iirdesign function was disected.  We reviewed the basics of filter specification and reviewed how to use the iirdesign function to design IIR filters.  The previous post I only demonstrated low pass filter designs.  The following are examples how to use the iirdesign function for highpass, bandpass, and stopband filters designs.

Highpass Filter

The following is a highpass filter design for the different filter...


Spectral Flipping Around Signal Center Frequency

Rick Lyons November 8, 20074 comments

Most of us are familiar with the process of flipping the spectrum (spectral inversion) of a real signal by multiplying that signal's time samples by (-1)n. In that process the center of spectral rotation is fs/4, where fs is the signal's sample rate in Hz. In this blog we discuss a different kind of spectral flipping process.

Consider the situation where we need to flip the X(f) spectrum in Figure 1(a) to obtain the desired Y(f) spectrum shown in Figure 1(b). Notice that the center of...


Waveforms that are their own Fourier Transform

Steve Smith January 16, 200811 comments

Mea Culpa 

There are many scary things about writing a technical book. Can I make the concepts clear? It is worth the effort? Will it sell? But all of these pale compared to the biggest fear: What if I'm just plain wrong? Not being able to help someone is one thing, but leading them astray is far worse.

My book on DSP has now been published for almost ten years. I've found lots of typos, a few misstatements, and many places where the explanations confuse even me. But I have been lucky;...


Generating Complex Baseband and Analytic Bandpass Signals

Rick Lyons November 2, 20112 comments

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of reference table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or...


The Swiss Army Knife of Digital Networks

Rick Lyons June 13, 20163 comments

This blog describes a general discrete-signal network that appears, in various forms, inside so many DSP applications. 

Figure 1 shows how the network's structure has the distinct look of a digital filter—a comb filter followed by a 2nd-order recursive network. However, I do not call this useful network a filter because its capabilities extend far beyond simple filtering. Through a series of examples I've illustrated the fundamental strength of this Swiss Army Knife of digital networks...


Computing Large DFTs Using Small FFTs

Rick Lyons June 24, 200815 comments

It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.

The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...


Some Observations on Comparing Efficiency in Communication Systems

Eric Jacobsen March 17, 2011
Introduction

Engineering is usually about managing efficiencies of one sort or another. One of my favorite working definitions of an engineer says, "An engineer is somebody who can do for a nickel what any damn fool can do for a dollar." In that case, the implication is that the cost is one of the characteristics being optimized. But cost isn't always the main efficiency metric, or at least the only one. Consider how a common transportation appliance, the automobile, is optimized...


A Simple Complex Down-conversion Scheme

Rick Lyons January 21, 20085 comments
Recently I was experimenting with complex down-conversion schemes. That is, generating an analytic (complex) version, centered at zero Hz, of a real bandpass signal that was originally centered at ±fs/4 (one fourth the sample rate). I managed to obtain one such scheme that is computationally efficient, and it might be of some mild interest to you guys. The simple complex down-conversion scheme is shown in Figure 1(a).

It works like this: say we have a real xR(n) input bandpass...


Design of an anti-aliasing filter for a DAC

Markus Nentwig August 18, 2012
Overview
  • Octaveforge / Matlab design script. Download: here
  • weighted numerical optimization of Laplace-domain transfer function
  • linear-phase design, optimizes vector error (magnitude and phase)
  • design process calculates and corrects group delay internally
  • includes sinc() response of the sample-and-hold stage in the ADC
  • optionally includes multiplierless FIR filter
Problem Figure 1: Typical FIR-DAC-analog lowpass line-up

Digital-to-analog conversion connects digital...


Goertzel Algorithm for a Non-integer Frequency Index

Rick Lyons October 7, 2013

If you've read about the Goertzel algorithm, you know it's typically presented as an efficient way to compute an individual kth bin result of an N-point discrete Fourier transform (DFT). The integer-valued frequency index k is in the range of zero to N-1 and the standard block diagram for the Goertzel algorithm is shown in Figure 1. For example, if you want to efficiently compute just the 17th DFT bin result (output sample X17) of a 64-point DFT you set integer frequency index k = 17 and N =...