A Wide-Notch Comb Filter

Rick Lyons November 24, 201918 comments

This blog describes a linear-phase comb filter having wider stopband notches than a traditional comb filter.

Background

Let's first review the behavior of a traditional comb filter. Figure 1(a) shows a traditional comb filter comprising two cascaded recursive running sum (RRS) comb filters. Figure 1(b) shows the filter's co-located dual poles and dual zeros on the z-plane, while Figure 1(c) shows the filter's positive-frequency magnitude response when, for example, D = 9. The...

An Efficient Lowpass Filter in Octave

Paul Lovell November 6, 2019

This article describes an efficient linear-phase lowpass FIR filter, coded using the Octave programming language. The intention is to focus on the implementation in software, but references are provided for those who wish to undertake further study of interpolated FIR filters [1]- [3].

The input signal is processed as a vector of samples (eg from a .wav file), which are converted to a matrix format.   The complete filter is thus referred to as a Matrix IFIR or...


Compute Modulation Error Ratio (MER) for QAM

Neil Robertson November 5, 20192 comments

This post defines the Modulation Error Ratio (MER) for QAM signals, and shows how to compute it.  As we’ll see, in the absence of impairments other than noise, the MER tracks the signal’s Carrier-to-Noise Ratio (over a limited range).  A Matlab script at the end of the PDF version of this post computes MER for a simplified QAM-64 system.

Figure 1 is a simplified block diagram of a QAM system.  The transmitter includes a source of QAM symbols, a root-Nyquist...


Polynomial calculations on an FIR filter engine, part 1

Kendall Castor-Perry October 1, 20192 comments

Polynomial evaluation is structurally akin to FIR filtering and fits dedicated filtering engines quite well, with certain caveats. It’s a technique that has wide applicability. This two-part note discusses transducer and amplifier non-linearity compensation, function approximation and aspects of harmonic signal synthesis.

Need for polynomials as general non-linear functions

Many transducer types exhibit a non-linear relationship between a measured parameter, such as a voltage, and...


The Risk In Using Frequency Domain Curves To Evaluate Digital Integrator Performance

Rick Lyons September 24, 201933 comments

This blog shows the danger in evaluating the performance of a digital integration network based solely on its frequency response curve. If you plan on implementing a digital integrator in your signal processing work I recommend you continue reading this blog.

Background

Typically when DSP practitioners want to predict the accuracy performance of a digital integrator they compare how closely that integrator's frequency response matches the frequency response of an ideal integrator [1,2]....


Plotting Discrete-Time Signals

Neil Robertson September 15, 20195 comments

A discrete-time sinusoid can have frequency up to just shy of half the sample frequency.  But if you try to plot the sinusoid, the result is not always recognizable.  For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine.  But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots.  We typically want the plot of a...


5G NR QC-LDPC Encoding Algorithm

Lyons Zhang September 10, 20192 comments

3GPP 5G has been focused on structured LDPC codes known as quasi-cyclic low-density parity-check (QC-LDPC) codes, which exhibit advantages over other types of LDPC codes with respect to the hardware implementations of encoding and decoding using simple shift registers and logic circuits.  

5G NR QC-LDPC  Circulant Permutation Matrix

A circular permutation matrix ${\bf I}(P_{i,j})$ of size $Z_c \times Z_c$ is obtained by circularly shifting the identity matrix $\bf I$ of...


Interpolation Basics

Neil Robertson August 20, 201915 comments

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal.  Figure 1 illustrates what we mean by interpolation.  The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts.  The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1].  For example, if...


A Two Bin Solution

Cedron Dawg July 12, 2019
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by showing an implementation of how the parameters of a real pure tone can be calculated from just two DFT bin values. The equations from previous articles are used in tandem to first calculate the frequency, and then calculate the amplitude and phase of the tone. The approach works best when the tone is between the two DFT bins in terms of frequency.

The Coding...

Reduced-Delay IIR Filters

Rick Lyons July 4, 201919 comments

This blog gives the results of a preliminary investigation of reduced-delay (reduced group delay) IIR filters based on my understanding of the concepts presented in a recent interesting blog by Steve Maslen [1].

Development of a Reduced-Delay 2nd-Order IIR Filter

Maslen's development of a reduced-delay 2nd-order IIR filter begins with a traditional prototype filter, HTrad, shown in Figure 1(a). The first modification to the prototype filter is to extract the b0 feedforward coefficient...


Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Jason Sachs November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...


Linear-phase DC Removal Filter

Rick Lyons March 30, 200825 comments

This blog describes several DC removal networks that might be of interest to the dsprelated.com readers.

Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a time-domain sequence [1]. Discussed in that thread was the notion of removing a signal's DC bias by subtracting the signal's moving average from that signal, as shown in Figure 1(a).

Figure 1.

At first I thought...


Plotting Discrete-Time Signals

Neil Robertson September 15, 20195 comments

A discrete-time sinusoid can have frequency up to just shy of half the sample frequency.  But if you try to plot the sinusoid, the result is not always recognizable.  For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine.  But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots.  We typically want the plot of a...


Frequency-Domain Periodicity and the Discrete Fourier Transform

Eric Jacobsen August 6, 2012

Introduction

Some of the better understood aspects of time-sampled systems are the limitations and requirements imposed by the Nyquist sampling theorem [1]. Somewhat less understood is the periodic nature of the spectra of sampled signals. This article provides some insights into sampling that not only explain the periodic nature of the sampled spectrum, but aliasing, bandlimited sampling, and the so-called "super-Nyquist" or IF sampling. The approaches taken here include both mathematical...


A Differentiator With a Difference

Rick Lyons November 3, 200713 comments

Some time ago I was studying various digital differentiating networks, i.e., networks that approximate the process of taking the derivative of a discrete time-domain sequence. By "studying" I mean that I was experimenting with various differentiating filter coefficients, and I discovered a computationally-efficient digital differentiator. A differentiator that, for low fequency signals, has the power of George Foreman's right hand! Before I describe this differentiator, let's review a few...


An s-Plane to z-Plane Mapping Example

Rick Lyons September 24, 20169 comments

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.

...

Optimizing the Half-band Filters in Multistage Decimation and Interpolation

Rick Lyons January 4, 201616 comments

This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.

Figure 1: Multistage decimation and interpolation using half-band filters.

Multistage Decimation – A Very Brief Review

Figure 2(a) depicts the process of decimation by an integer factor D. That...


The Number 9, Not So Magic After All

Rick Lyons October 1, 20146 comments

This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.

For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...


Time Machine, Anyone?

Andor Bariska March 7, 20086 comments

Abstract: Dispersive linear systems with negative group delay have caused much confusion in the past. Some claim that they violate causality, others that they are the cause of superluminal tunneling. Can we really receive messages before they are sent? This article aims at pouring oil in the fire and causing yet more confusion :-).

PDF version of this article.

Introduction 

In this article we reproduce the results of a physical experiment...


Interpolation Basics

Neil Robertson August 20, 201915 comments

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal.  Figure 1 illustrates what we mean by interpolation.  The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts.  The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1].  For example, if...


New Code Sharing Section & Reward Program for Contributors!

Stephane Boucher October 15, 201012 comments

UPDATE (11/02/2010): The code section is now live.

UPDATE 2 (01/31/2011): The reward program has changed.  A flat fee of $20 per code snippet submitted will now be paid.  

_______________

I am very happy to finally announce the imminent launch of the new code sharing section.  My vision for this new section is a rich library of high quality code snippets for the DSP community, from processor specific functions to Matlab or Scilab routines, from the simplest filter...


50,000th Member Announced!

Stephane Boucher January 11, 2010

In my last post, I wrote that DSPRelated.com was about to reach the 50,000 members mark.  Well, I am very happy to announce that it happened during the holidays, and the lucky person is Charlie Tsai from Taiwan.  Charlie is an assistant professor in the Department of Electrical Engineering at the National Central University in Taiwan where he teaches the "Biomedical Signal Processing" class.  He is also the advisor of the


Almost 50,000 Members!

Stephane Boucher November 26, 20091 comment

I am very happy to announce that DSPRelated.com will reach the 50,000 registered members mark before the end of 2009. To celebrate this milestone, I will buy a BMW 5 to the 50,000th person to register (please make sure to confirm you email address to activate your registration).  Please read the fine prints after the picture.

I am just having fun here and it's not even April's fool day.  The 50,000th member won't get a BMW (I wish I could offer it!),...


DSPRelated faster than ever!

Stephane Boucher March 2, 20094 comments

if you are visiting DSPRelated.com on a regular basis, you should observe that the site loads significantly faster in your browser than it used to, especially if you are in Europe or in Asia.  The main reason for this is that I am now using Amazon's CloudFront service for the delivery of most static content on DSPRelated.com (images, javascripts, css).   The cloudFront service automatically detects the location of a visitor and will deliver the static content from the server...


New Papers / Theses Section

Stephane Boucher March 21, 20081 comment

The new 'Papers & Theses' section is now online: http://www.dsprelated.com/documents.phpThe idea is to list and organize in one place as many DSP related dissertations (PhD & Masters) and papers/articles as possible.If you are the author of a thesis or paper and would like to have it listed on DSPRelated.com, please follow these steps:- Make sure that you are allowed to share the document online (copyright).- If you don't already have one, make a 'pdf' copy of your document. ...


New Blog Section!

Stephane Boucher September 19, 20072 comments

By now, chances are you have noticed the new blogs section (you are actually in it right now!).

Following an email I sent to the members of the site, a few weeks ago, asking for dsp engineers willing to blog here, I received around 50 propositions. I have selected an initial set of 10 bloggers (that I will soon introduce into a seperate post) and I am currently in the process of creating their accounts. Markus and Parth have already...


New Discussion Group: DSP & FPGA

Stephane Boucher September 11, 20078 comments

I have just created a new discussion group for engineers implementing DSP functions on FPGAs. The creation of this group has been on my todo list for a long time. If you want to join the group, send a blank email to: fpgadsp-subscribe@yahoogroups.com

As usual, it should take a few weeks before there are enough members for interesting discussions to get started.