## A Brief Introduction To Romberg Integration

This blog briefly describes a remarkable integration algorithm, called "Romberg integration." The algorithm is used in the field of numerical analysis but it's not so well-known in the world of DSP.

To show the power of Romberg integration, and to convince you to continue reading, consider the notion of estimating the area under the continuous x(t) = sin(t) curve based on the five x(n) samples represented by the dots in Figure 1.The results of performing a Trapezoidal Rule, a...

## Use Matlab Function pwelch to Find Power Spectral Density – or Do It Yourself

In my last post, we saw that finding the spectrum of a signal requires several steps beyond computing the discrete Fourier transform (DFT)[1]. These include windowing the signal, taking the magnitude-squared of the DFT, and computing the vector of frequencies. The Matlab function pwelch [2] performs all these steps, and it also has the option to use DFT averaging to compute the so-called Welch power spectral density estimate [3,4].

In this article, I’ll present some...

## Microprocessor Family Tree

Below is a little microprocessor history. Perhaps some of the ol' timers here will recognize a few of these integrated circuits. I have a special place in my heart for the Intel 8080 chip.

Image copied, without permission, from the now defunct Creative Computing magazine, Vol. 11, No. 6, June 1985.

## A Markov View of the Phase Vocoder Part 2

IntroductionLast post we motivated the idea of viewing the classic phase vocoder as a Markov process. This was due to the fact that the input signal’s features are unknown to the computer, and the phase advancement for the next synthesis frame is entirely dependent on the phase advancement of the current frame. We will dive a bit deeper into this idea, and flesh out some details which we left untouched last week. This includes the effect our discrete Fourier transform has on the...

## A Markov View of the Phase Vocoder Part 1

IntroductionHello! This is my first post on dsprelated.com. I have a blog that I run on my website, http://www.christianyostdsp.com. In order to engage with the larger DSP community, I'd like to occasionally post my more engineering heavy writing here and get your thoughts.

Today we will look at the phase vocoder from a different angle by bringing some probability into the discussion. This is the first part in a short series. Future posts will expand further upon the ideas...

## Evaluate Window Functions for the Discrete Fourier Transform

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum. For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT. Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3]. There are many different window functions and each produces a different approximation of the spectrum. In this post, we’ll present Matlab code that...

## Feedback Controllers - Making Hardware with Firmware. Part 10. DSP/FPGAs Behaving Irrationally

This article will look at a design approach for feedback controllers featuring low-latency "irrational" characteristics to enable the creation of physical components such as transmission lines. Some thought will also be given as to the capabilities of the currently utilized Intel Cyclone V, the new Cyclone 10 GX and the upcoming Xilinx Versal floating-point FPGAs/ACAPs.

Fig 1. Making a Transmission Line, with the Circuit Emulator

Additional...

## Polar Coding Notes: A Simple Proof

For any B-DMC $W$, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0, 1)$, as $N$ goes to infinity through powers of two, the fraction of indices $i \in \{1, \dots, N\}$ for which $I(W_N^{(i)}) \in (1 − \delta, 1]$ goes to $I(W)$ and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to $1−I(W)^{[1]}$.

Mrs. Gerber’s Lemma

Mrs. Gerber’s Lemma provides a lower bound on the entropy of the modulo-$2$ sum of two binary random...

## Polar Coding Notes: Channel Combining and Channel Splitting

Channel Combining

Channel combining is a step that combines copies of a given B-DMC $W$ in a recursive manner to produce a vector channel $W_N : {\cal X}^N \to {\cal Y}^N$, where $N$ can be any power of two, $N=2^n, n\le0^{[1]}$.

The notation $u_1^N$ as shorthand for denoting a row vector $(u_1, \dots , u_N)$.

The vector channel $W_N$ is the virtual channel between the input sequence $u_1^N$ to a linear encoder and the output sequence $y^N_1$ of $N$...

## Project Report : Digital Filter Blocks in MyHDL and their integration in pyFDA

The Google Summer of Code 2018 is now in its final stages, and I’d like to take a moment to look back at what goals were accomplished, what remains to be completed and what I have learnt.

The project overview was discussed in the previous blog posts. However this post serves as a guide to anyone who wishes to learn about the project or carry it forward. Hence I will go over the project details again.

Project overviewThe project “Digital Filter Blocks in MyHDL and PyFDA integration" aims...

## Linear-phase DC Removal Filter

This blog describes several DC removal networks that might be of interest to the dsprelated.com readers.

Back in August 2007 there was a thread on the comp.dsp newsgroup concerning the process of removing the DC (zero Hz) component from a time-domain sequence [1]. Discussed in that thread was the notion of removing a signal's DC bias by subtracting the signal's moving average from that signal, as shown in Figure 1(a).

Figure 1.

At first I thought...

## Second Order Discrete-Time System Demonstration

Discrete-time systems are remarkable: the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z). Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system. With a discrete-time model, we can then easily compute the time response to any input. But note that the goal here is as much to...

## Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.

This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...

## Pulse Shaping in Single-Carrier Communication Systems

Some common conceptual hurdles for beginning communications engineers have to do with "Pulse Shaping" or the closely-related, even synonymous, topics of "matched filtering", "Nyquist filtering", "Nyquist pulse", "pulse filtering", "spectral shaping", etc. Some of the confusion comes from the use of terms like "matched filter" which has a broader meaning in the more general field of signal processing or detection theory. Likewise "Raised Cosine" has a different meaning or application in this...

## The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct

## Free Goodies from Embedded World - What to Do Next?

I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.

## Angle Addition Formulas from Euler's Formula

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT), but only indirectly. The main intent is to get someone who is uncomfortable with complex numbers a little more used to them and relate them back to already known Trigonometric relationships done in Real values. It is essentially a followup to my first blog article "The Exponential Nature of the Complex Unit Circle".

Polar CoordinatesThe more common way of...

## Design IIR Highpass Filters

This post is the fourth in a series of tutorials on IIR Butterworth filter design. So far we covered lowpass [1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters. The general approach, as before, has six steps:

Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the analog highpass filter (pre-warping). Transform the...## An Efficient Linear Interpolation Scheme

This blog presents a computationally-efficient linear interpolation trick that requires at most one multiply per output sample.

Background: Linear Interpolation

Looking at Figure 1(a) let's assume we have two points, [x(0),y(0)] and [x(1),y(1)], and we want to compute the value y, on the line joining those two points, associated with the value x.

Figure 1: Linear interpolation: given x, x(0), x(1), y(0), and y(1), compute the value of y. ...

## Free DSP Books on the Internet

While surfing the "net" I have occasionally encountered signal processing books whose chapters could be downloaded to my computer. I started keeping a list of those books and, over the years, that list has grown to over forty books. Perhaps the list will be of interest to you.

Please know, all of the listed books are copyrighted. The copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As...

## Computing Large DFTs Using Small FFTs

It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.

The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...

## How Discrete Signal Interpolation Improves D/A Conversion

This blog post is also available in pdf format. Download here.Earlier this year, for the Linear Audio magazine, published in the Netherlands whose subscribers are technically-skilled hi-fi audio enthusiasts, I wrote an article on the fundamentals of interpolation as it's used to improve the performance of analog-to-digital conversion. Perhaps that article will be of some value to the subscribers of dsprelated.com. Here's what I wrote:

We encounter the process of digital-to-analog...

## TCP/IP interface (Matlab/Octave)

Communicate with measurement instruments via Ethernet (no-toolbox-Matlab or Octave)

PurposeMeasurement automation is digital signal processing in a wider sense: Getting a digital signal from an analog world usually involves some measurement instruments, for example a spectrum analyzer. Modern instruments, and also many off-the-shelf prototyping boards such as FPGA cards [1] or microcontrollers [2] are able to communicate via Ethernet. Here, I provide some basic mex-functions (compiled C...

## The Number 9, Not So Magic After All

This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.

For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...

## Sinusoidal Frequency Estimation Based on Time-Domain Samples

The topic of estimating a noise-free real or complex sinusoid's frequency, based on fast Fourier transform (FFT) samples, has been presented in recent blogs here on dsprelated.com. For completeness, it's worth knowing that simple frequency estimation algorithms exist that do not require FFTs to be performed . Below I present three frequency estimation algorithms that use time-domain samples, and illustrate a very important principle regarding so called "exact"...

## A poor man's Simulink

Glue between Octave and NGSPICE for discrete- and continuous time cosimulation (download) Keywords: Octave, SPICE, Simulink

IntroductionMany DSP problems have close ties with the analog world. For example, a switched-mode audio power amplifier uses a digital control loop to open and close power transistors driving an analog filter. There are commercial tools for digital-analog cosimulation: Simulink comes to mind, and mainstream EDA vendors support VHDL-AMS or Verilog-A in their...

## Spectral Flipping Around Signal Center Frequency

Most of us are familiar with the process of flipping the spectrum (spectral inversion) of a real signal by multiplying that signal's time samples by (-1)n. In that process the center of spectral rotation is fs/4, where fs is the signal's sample rate in Hz. In this blog we discuss a different kind of spectral flipping process.

Consider the situation where we need to flip the X(f) spectrum in Figure 1(a) to obtain the desired Y(f) spectrum shown in Figure 1(b). Notice that the center of...

## Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World

When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...

## Generating Complex Baseband and Analytic Bandpass Signals

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of reference table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or...

## Padé Delay is Okay Today

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...