## Design IIR Highpass Filters

This post is the fourth in a series of tutorials on IIR Butterworth filter design. So far we covered lowpass [1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters. The general approach, as before, has six steps:

Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the analog highpass filter (pre-warping). Transform the...## Design IIR Band-Reject Filters

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters. Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies. I’ll discuss the differences between the two approaches later in this...

## Design IIR Bandpass Filters

In this post, I present a method to design Butterworth IIR bandpass filters. My previous post [1] covered lowpass IIR filter design, and provided a Matlab function to design them. Here, we’ll do the same thing for IIR bandpass filters, with a Matlab function bp_synth.m. Here is an example function call for a bandpass filter based on a 3rd order lowpass prototype:

N= 3; % order of prototype LPF fcenter= 22.5; % Hz center frequency, Hz bw= 5; ...## Phase and Amplitude Calculation for a Pure Complex Tone in a DFT

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from a DFT bin value and knowing the frequency. This is a much simpler problem to solve than the corresponding case for a pure real tone which I covered in an earlier blog article[1]. In the noiseless single tone case, these equations will be exact. In the presence of noise or other tones...

## Feedback Controllers - Making Hardware with Firmware. Part 7. Turbo-charged DSP Oscillators

This article will look at some DSP Sine-wave oscillators and will show how an FPGA with limited floating-point performance due to latency, can be persuaded to produce much higher sample-rate sine-waves of high quality.Comparisons will be made between implementations on Intel Cyclone V and Cyclone 10 GX FPGAs. An Intel numerically controlled oscillator

## Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals

Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:

- the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
- the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream

The unusually-good correlation properties...

## An Efficient Linear Interpolation Scheme

This blog presents a computationally-efficient linear interpolation trick that requires at most one multiply per output sample.

Background: Linear Interpolation

Looking at Figure 1(a) let's assume we have two points, [x(0),y(0)] and [x(1),y(1)], and we want to compute the value y, on the line joining those two points, associated with the value x.

Figure 1: Linear interpolation: given x, x(0), x(1), y(0), and y(1), compute the value of y. ...

## An Alternative Form of the Pure Real Tone DFT Bin Value Formula

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving alternative exact formulas for the bin values of a real tone in a DFT. The derivation of the source equations can be found in my earlier blog article titled "DFT Bin Value Formulas for Pure Real Tones"[1]. The new form is slighty more complicated and calculation intensive, but it is more computationally accurate in the vicinity of near integer frequencies. This...

## Design IIR Butterworth Filters Using 12 Lines of Code

While there are plenty of canned functions to design Butterworth IIR filters [1], it’s instructive and not that complicated to design them from scratch. You can do it in 12 lines of Matlab code. In this article, we’ll create a Matlab function butter_synth.m to design lowpass Butterworth filters of any order. Here is an example function call for a 5th order filter:

## Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.

This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.

- Part 6: Self-Calibration, Measurements and Signalling (this part)
- Part 5:

## Polyphase filter / Farrows interpolation

Hello,

this article is meant to give a quick overview over polyphase filtering and Farrows interpolation.

A good reference with more depth is for example Fred Harris' paper: http://www.signumconcepts.com/IP_center/paper018.pdf

The task is as follows: Interpolate a band-limited discrete-time signal at a variable offset between samples.In other words:Delay the signal by a given amount with sub-sample accuracy.Both mean the same.

The picture below shows samples (black) representing...

## Phase and Amplitude Calculation for a Pure Real Tone in a DFT: Method 1

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the phase and amplitude of a non-integer frequency real tone in a DFT. The linearity of the Fourier Transform is exploited to reframe the problem as the equivalent of finding a set of coordinates in a specific vector space. The found coordinates are then used to calculate the phase and amplitude of the pure real tone in the DFT. This article...

## Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.

This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...

## Sensors Expo - Trip Report & My Best Video Yet!

This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.

Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip. If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...

## Take Control of Noise with Spectral Averaging

Most engineers have seen the moment-to-moment fluctuations that are common with instantaneous measurements of a supposedly steady spectrum. You can see these fluctuations in magnitude and phase for each frequency bin of your spectrogram. Although major variations are certainly reason for concern, recall that we don’t live in an ideal, noise-free world. After verifying the integrity of your measurement setup by checking connections, sensors, wiring, and the like, you might conclude that the...

## Online DSP Classes: Why Such a High Dropout Rate?

Last year the IEEE Signal Processing Magazine published a lengthy article describing three university-sponsored online digital signal processing (DSP) courses [1]. The article detailed all the effort the professors expended in creating those courses and the courses' perceived values to students.

However, one fact that struck me as important, but not thoroughly addressed in the article, was the shocking dropout rate of those online courses. For two of the courses the article's...

## Wavelets II - Vanishing Moments and Spectral Factorization

In the previous blog post I described the workings of the Fast Wavelet Transform (FWT) and how wavelets and filters are related. As promised, in this article we will see how to construct useful filters. Concretely, we will find a way to calculate the Daubechies filters, named after Ingrid Daubechies, who invented them and also laid much of the mathematical foundations for wavelet analysis.

Besides the content of the last post, you should be familiar with basic complex algebra, the...

## Angle Addition Formulas from Euler's Formula

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT), but only indirectly. The main intent is to get someone who is uncomfortable with complex numbers a little more used to them and relate them back to already known Trigonometric relationships done in Real values. It is essentially a followup to my first blog article "The Exponential Nature of the Complex Unit Circle".

Polar CoordinatesThe more common way of...

## Design a DAC sinx/x Corrector

This post provides a Matlab function that designs linear-phase FIR sinx/x correctors. It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.

A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process. In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses. These are converted by the DAC into contiguous pulses...

## Peak to Average Power Ratio and CCDF

Peak to Average Power Ratio (PAPR) is often used to characterize digitally modulated signals. One example application is setting the level of the signal in a digital modulator. Knowing PAPR allows setting the average power to a level that is just low enough to minimize clipping.

However, for a random signal, PAPR is a statistical quantity. We have to ask, what is the probability of a given peak power? Then we can decide where to set the average...

## An s-Plane to z-Plane Mapping Example

While surfing around the Internet recently I encountered the 's-plane to z-plane mapping' diagram shown in Figure 1. At first I thought the diagram was neat because it's a good example of the old English idiom: "A picture is worth a thousand words." However, as I continued to look at Figure 1 I began to detect what I believe are errors in the diagram.

Reader, please take a few moments to see if you detect any errors in Figure 1.

...## The History of CIC Filters: The Untold Story

If you have ever studied or designed a cascaded integrator-comb (CIC) lowpass filter then surely you've read Eugene Hogenauer's seminal 1981 IEEE paper where he first introduced the CIC filter to the signal processing world [1]. As it turns out, Hogenauer's famous paper was not the first formal document describing and proposing CIC filters. Here's the story.

In the Fall of 1979 Eugene Hogenauer was finalizing his development of the CIC filter, the filter now used in so many multirate signal...

## Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...

## Python scipy.signal IIR Filter Design Cont.

In the previous post the Python scipy.signal iirdesign function was disected. We reviewed the basics of filter specification and reviewed how to use the iirdesign function to design IIR filters. The previous post I only demonstrated low pass filter designs. The following are examples how to use the iirdesign function for highpass, bandpass, and stopband filters designs.

Highpass FilterThe following is a highpass filter design for the different filter...

## Generating Complex Baseband and Analytic Bandpass Signals

There are so many different time- and frequency-domain methods for generating complex baseband and analytic bandpass signals that I had trouble keeping those techniques straight in my mind. Thus, for my own benefit, I created a kind of reference table showing those methods. I present that table for your viewing pleasure in this blog.

For clarity, I define a complex baseband signal as follows: derived from an input analog xbp(t)bandpass signal whose spectrum is shown in Figure 1(a), or...

## Curse you, iPython Notebook!

First, I think ipython is great. I use it daily and always have an ipython terminal open. But just recently, I was showing off the ipython 0.12 notebook and in the process created a lengthy example while demonstrating the cool features of the ipython notebook. The example included LaTeX equations, plots, etc. Since the notebook session was on something of relevance I decided to clean up the session and use it for the beginning of a report.

## Recruiting New Bloggers!

Previous calls for bloggers have been very successful in recruiting some great communicators - Rick Lyons, Jason Sachs, Victor Yurkovsky, Mike Silva, Markus Nentwig, Gene Breniman, Stephen Friederichs,

## Instantaneous Frequency Measurement

I would like to talk about the oft used method of measuring the carrier frequency in the world of Signal Collection and Characterization world. It is an elegant technique because of its simplicity. But, of course, with simplicity, there come drawbacks (sometimes...especially with this one!).

In the world of Radar detection and characterization, one of the key characteristics of interest is the carrier frequency of the signal. If the radar is pulsed, you will have a very wide bandwidth, a...

## Waveforms that are their own Fourier Transform

Mea Culpa

There are many scary things about writing a technical book. Can I make the concepts clear? It is worth the effort? Will it sell? But all of these pale compared to the biggest fear: What if I'm just plain wrong? Not being able to help someone is one thing, but leading them astray is far worse.

My book on DSP has now been published for almost ten years. I've found lots of typos, a few misstatements, and many places where the explanations confuse even me. But I have been lucky;...

## Setting the 3-dB Cutoff Frequency of an Exponential Averager

This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.

Figure 1 shows...