An Efficient Lowpass Filter in Octave

Paul Lovell November 6, 2019

This article describes an efficient linear-phase lowpass FIR filter, coded using the Octave programming language. The intention is to focus on the implementation in software, but references are provided for those who wish to undertake further study of interpolated FIR filters [1]- [3].

The input signal is processed as a vector of samples (eg from a .wav file), which are converted to a matrix format.   The complete filter is thus referred to as a Matrix IFIR or...


Compute Modulation Error Ratio (MER) for QAM

Neil Robertson November 5, 20192 comments

This post defines the Modulation Error Ratio (MER) for QAM signals, and shows how to compute it.  As we’ll see, in the absence of impairments other than noise, the MER tracks the signal’s Carrier-to-Noise Ratio (over a limited range).  A Matlab script at the end of the PDF version of this post computes MER for a simplified QAM-64 system.

Figure 1 is a simplified block diagram of a QAM system.  The transmitter includes a source of QAM symbols, a root-Nyquist...


Polynomial calculations on an FIR filter engine, part 1

Kendall Castor-Perry October 1, 20192 comments

Polynomial evaluation is structurally akin to FIR filtering and fits dedicated filtering engines quite well, with certain caveats. It’s a technique that has wide applicability. This two-part note discusses transducer and amplifier non-linearity compensation, function approximation and aspects of harmonic signal synthesis.

Need for polynomials as general non-linear functions

Many transducer types exhibit a non-linear relationship between a measured parameter, such as a voltage, and...


The Risk In Using Frequency Domain Curves To Evaluate Digital Integrator Performance

Rick Lyons September 24, 201933 comments

This blog shows the danger in evaluating the performance of a digital integration network based solely on its frequency response curve. If you plan on implementing a digital integrator in your signal processing work I recommend you continue reading this blog.

Background

Typically when DSP practitioners want to predict the accuracy performance of a digital integrator they compare how closely that integrator's frequency response matches the frequency response of an ideal integrator [1,2]....


Plotting Discrete-Time Signals

Neil Robertson September 15, 20195 comments

A discrete-time sinusoid can have frequency up to just shy of half the sample frequency.  But if you try to plot the sinusoid, the result is not always recognizable.  For example, if you plot a 9 Hz sinusoid sampled at 100 Hz, you get the result shown in the top of Figure 1, which looks like a sine.  But if you plot a 35 Hz sinusoid sampled at 100 Hz, you get the bottom graph, which does not look like a sine when you connect the dots.  We typically want the plot of a...


5G NR QC-LDPC Encoding Algorithm

Lyons Zhang September 10, 20192 comments

3GPP 5G has been focused on structured LDPC codes known as quasi-cyclic low-density parity-check (QC-LDPC) codes, which exhibit advantages over other types of LDPC codes with respect to the hardware implementations of encoding and decoding using simple shift registers and logic circuits.  

5G NR QC-LDPC  Circulant Permutation Matrix

A circular permutation matrix ${\bf I}(P_{i,j})$ of size $Z_c \times Z_c$ is obtained by circularly shifting the identity matrix $\bf I$ of...


Interpolation Basics

Neil Robertson August 20, 201915 comments

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal.  Figure 1 illustrates what we mean by interpolation.  The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts.  The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1].  For example, if...


A Two Bin Solution

Cedron Dawg July 12, 2019
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by showing an implementation of how the parameters of a real pure tone can be calculated from just two DFT bin values. The equations from previous articles are used in tandem to first calculate the frequency, and then calculate the amplitude and phase of the tone. The approach works best when the tone is between the two DFT bins in terms of frequency.

The Coding...

Reduced-Delay IIR Filters

Rick Lyons July 4, 201919 comments

This blog gives the results of a preliminary investigation of reduced-delay (reduced group delay) IIR filters based on my understanding of the concepts presented in a recent interesting blog by Steve Maslen [1].

Development of a Reduced-Delay 2nd-Order IIR Filter

Maslen's development of a reduced-delay 2nd-order IIR filter begins with a traditional prototype filter, HTrad, shown in Figure 1(a). The first modification to the prototype filter is to extract the b0 feedforward coefficient...


Part 11. Using -ve Latency DSP to Cancel Unwanted Delays in Sampled-Data Filters/Controllers

Steve Maslen June 18, 201917 comments
This final article in the series will look at -ve latency DSP and how it can be used to cancel the unwanted delays in sampled-data systems due to such factors as Nyquist filtering, ADC acquisition, DSP/FPGA algorithm computation time, DAC reconstruction and circuit propagation delays.

Some applications demand zero-latency or zero unwanted latency signal processing. Negative latency DSP may sound like the stuff of science fiction or broken physics but the arrangement as...


Optimizing the Half-band Filters in Multistage Decimation and Interpolation

Rick Lyons January 4, 201616 comments

This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.

Figure 1: Multistage decimation and interpolation using half-band filters.

Multistage Decimation – A Very Brief Review

Figure 2(a) depicts the process of decimation by an integer factor D. That...


Time Machine, Anyone?

Andor Bariska March 7, 20086 comments

Abstract: Dispersive linear systems with negative group delay have caused much confusion in the past. Some claim that they violate causality, others that they are the cause of superluminal tunneling. Can we really receive messages before they are sent? This article aims at pouring oil in the fire and causing yet more confusion :-).

PDF version of this article.

Introduction 

In this article we reproduce the results of a physical experiment...


Evaluate Window Functions for the Discrete Fourier Transform

Neil Robertson December 18, 2018

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum.  For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT.  Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3].  There are many different window functions and each produces a different approximation of the spectrum.  In this post, we’ll present Matlab code that...


Phase or Frequency Shifter Using a Hilbert Transformer

Neil Robertson March 25, 201821 comments

In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter.  In either case, the input is a real signal and the output is a real signal.  We’ll use some simple Matlab code to simulate these systems.  After that, we’ll go into a little more detail on Hilbert transformer theory and design. 

Phase Shifter

A conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...


The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201517 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct


Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

Rick Lyons December 14, 201112 comments

There are two code snippets associated with this blog post:

Flat-Top Windowing Function for the Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

and

Testing the Flat-Top Windowing Function

This blog discusses an accurate method of estimating time-domain sinewave peak amplitudes based on fast Fourier transform (FFT) data. Such an operation sounds simple, but the scalloping loss characteristic of FFTs complicates the process. We eliminate that complication by...


Computing Large DFTs Using Small FFTs

Rick Lyons June 23, 200821 comments

It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.

The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...


Computing the Group Delay of a Filter

Rick Lyons November 19, 200817 comments

I just learned a new method (new to me at least) for computing the group delay of digital filters. In the event this process turns out to be interesting to my readers, this blog describes the method. Let's start with a bit of algebra so that you'll know I'm not making all of this up.

Assume we have the N-sample h(n) impulse response of a digital filter, with n being our time-domain index, and that we represent the filter's discrete-time Fourier transform (DTFT), H(ω), in polar form...


Noise shaping

Markus Nentwig December 9, 20123 comments

eywords: Quantization noise; noise shaping

A brief introduction to noise shaping, with firm resolve not to miss the forest for the trees. We may still stumble over some assorted roots. Matlab example code is included.

Quantization

Fig. 1 shows a digital signal that is reduced to a lower bit width, for example a 16 bit signal being sent to a 12 bit digital-to-analog converter. Rounding to the nearest output value is obviously the best that can be done to minimize the error of each...


Oscilloscope Dreams

Jason Sachs January 14, 20125 comments

My coworkers and I recently needed a new oscilloscope. I thought I would share some of the features I look for when purchasing one.

When I was in college in the early 1990's, our oscilloscopes looked like this:

Now the cathode ray tubes have almost all been replaced by digital storage scopes with color LCD screens, and they look like these:

Oscilloscopes are basically just fancy expensive boxes for graphing voltage vs. time. They span a wide range of features and prices:...