DSPRelated.com

A Simplified Matlab Function for Power Spectral Density

Neil Robertson March 3, 20204 comments

In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2].  Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs).  However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.

In this post, I create a simplified PSD function by putting a...


Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference

Stephane Boucher February 14, 2020

Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.

Chances are you also already know that you have until the end of the month of February to register for free. 

And chances are that you are one of the more than 3000 pro-active engineers who have already registered.

But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet.  You may...


Fractional Delay FIR Filters

Neil Robertson February 9, 202014 comments

Consider the following Finite Impulse Response (FIR) coefficients:

b = [b0 b1 b2 b1 b0]

These coefficients form a 5-tap symmetrical FIR filter having constant group delay [1,2] over 0 to fs/2 of:

D = (ntaps – 1)/2 = 2      samples

For a symmetrical filter with an odd number of taps, the group delay is always an integer number of samples, while for one with an even number of taps, the group delay is always an integer + 0.5 samples.  Can we design a filter...


The DFT of Finite-Length Time-Reversed Sequences

Rick Lyons December 20, 201910 comments

Recently I've been reading papers on underwater acoustic communications systems and this caused me to investigate the frequency-domain effects of time-reversal of time-domain sequences. I created this blog because there is so little coverage of this topic in the literature of DSP.

This blog reviews the two types of time-reversal of finite-length sequences and summarizes their discrete Fourier transform (DFT) frequency-domain characteristics.

The Two Types of Time-Reversal in DSP

...

Model Signal Impairments at Complex Baseband

Neil Robertson December 11, 20195 comments

In this article, we develop complex-baseband models for several signal impairments: interfering carrier, multipath, phase noise, and Gaussian noise.  To provide concrete examples, we’ll apply the impairments to a QAM system. The impairment models are Matlab functions that each use at most seven lines of code.  Although our example system is QAM, the models can be used for any complex-baseband signal.

I used a very simple complex-baseband model of a QAM system in my last


Update To: A Wide-Notch Comb Filter

Rick Lyons December 9, 2019

This blog presents alternatives to the wide-notch comb filter described in Reference [1]. That comb filter, which for notational reasons I now call a 2-RRS wide notch comb filter, is shown in Figure 1. I use the "2-RRS" moniker because the comb filter uses two recursive running sum (RRS) networks.

The z-domain transfer function of the 2-RRS wide-notch comb filter, H2-RRS(z), is:

References

[1] R. Lyons, "A Wide-Notch Comb Filter", dsprelated.com Blogs, Nov. 24, 2019, Available...


A Wide-Notch Comb Filter

Rick Lyons November 24, 201918 comments

This blog describes a linear-phase comb filter having wider stopband notches than a traditional comb filter.

Background

Let's first review the behavior of a traditional comb filter. Figure 1(a) shows a traditional comb filter comprising two cascaded recursive running sum (RRS) comb filters. Figure 1(b) shows the filter's co-located dual poles and dual zeros on the z-plane, while Figure 1(c) shows the filter's positive-frequency magnitude response when, for example, D = 9. The...

An Efficient Lowpass Filter in Octave

Paul Lovell November 6, 2019

This article describes an efficient linear-phase lowpass FIR filter, coded using the Octave programming language. The intention is to focus on the implementation in software, but references are provided for those who wish to undertake further study of interpolated FIR filters [1]- [3].

The input signal is processed as a vector of samples (eg from a .wav file), which are converted to a matrix format.   The complete filter is thus referred to as a Matrix IFIR or...


Compute Modulation Error Ratio (MER) for QAM

Neil Robertson November 5, 20192 comments

This post defines the Modulation Error Ratio (MER) for QAM signals, and shows how to compute it.  As we’ll see, in the absence of impairments other than noise, the MER tracks the signal’s Carrier-to-Noise Ratio (over a limited range).  A Matlab script at the end of the PDF version of this post computes MER for a simplified QAM-64 system.

Figure 1 is a simplified block diagram of a QAM system.  The transmitter includes a source of QAM symbols, a root-Nyquist...


Polynomial calculations on an FIR filter engine, part 1

Kendall Castor-Perry October 1, 20192 comments

Polynomial evaluation is structurally akin to FIR filtering and fits dedicated filtering engines quite well, with certain caveats. It’s a technique that has wide applicability. This two-part note discusses transducer and amplifier non-linearity compensation, function approximation and aspects of harmonic signal synthesis.

Need for polynomials as general non-linear functions

Many transducer types exhibit a non-linear relationship between a measured parameter, such as a voltage, and...


Frequency-Domain Periodicity and the Discrete Fourier Transform

Eric Jacobsen August 6, 2012

Introduction

Some of the better understood aspects of time-sampled systems are the limitations and requirements imposed by the Nyquist sampling theorem [1]. Somewhat less understood is the periodic nature of the spectra of sampled signals. This article provides some insights into sampling that not only explain the periodic nature of the sampled spectrum, but aliasing, bandlimited sampling, and the so-called "super-Nyquist" or IF sampling. The approaches taken here include both mathematical...


Evaluate Window Functions for the Discrete Fourier Transform

Neil Robertson December 18, 20184 comments

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum.  For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT.  Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3].  There are many different window functions and each produces a different approximation of the spectrum.  In this post, we’ll present Matlab code that...


Phase or Frequency Shifter Using a Hilbert Transformer

Neil Robertson March 25, 201821 comments

In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter.  In either case, the input is a real signal and the output is a real signal.  We’ll use some simple Matlab code to simulate these systems.  After that, we’ll go into a little more detail on Hilbert transformer theory and design. 

Phase Shifter

A conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...


Time Machine, Anyone?

Andor Bariska March 7, 20086 comments

Abstract: Dispersive linear systems with negative group delay have caused much confusion in the past. Some claim that they violate causality, others that they are the cause of superluminal tunneling. Can we really receive messages before they are sent? This article aims at pouring oil in the fire and causing yet more confusion :-).

PDF version of this article.

Introduction 

In this article we reproduce the results of a physical experiment...


The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201517 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct


Computing Large DFTs Using Small FFTs

Rick Lyons June 23, 200821 comments

It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier transforms (FFTs) whose sizes are less than N. For example, let's say the largest size FFT software routine you have available is a 1024-point FFT. With the following trick you can combine the results of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.

The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations. Here's how the trick...


Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

Rick Lyons December 14, 201112 comments

There are two code snippets associated with this blog post:

Flat-Top Windowing Function for the Accurate Measurement of a Sinusoid's Peak Amplitude Based on FFT Data

and

Testing the Flat-Top Windowing Function

This blog discusses an accurate method of estimating time-domain sinewave peak amplitudes based on fast Fourier transform (FFT) data. Such an operation sounds simple, but the scalloping loss characteristic of FFTs complicates the process. We eliminate that complication by...


Noise shaping

Markus Nentwig December 9, 20123 comments

eywords: Quantization noise; noise shaping

A brief introduction to noise shaping, with firm resolve not to miss the forest for the trees. We may still stumble over some assorted roots. Matlab example code is included.

Quantization

Fig. 1 shows a digital signal that is reduced to a lower bit width, for example a 16 bit signal being sent to a 12 bit digital-to-analog converter. Rounding to the nearest output value is obviously the best that can be done to minimize the error of each...


Computing the Group Delay of a Filter

Rick Lyons November 19, 200817 comments

I just learned a new method (new to me at least) for computing the group delay of digital filters. In the event this process turns out to be interesting to my readers, this blog describes the method. Let's start with a bit of algebra so that you'll know I'm not making all of this up.

Assume we have the N-sample h(n) impulse response of a digital filter, with n being our time-domain index, and that we represent the filter's discrete-time Fourier transform (DTFT), H(ω), in polar form...


Second Order Discrete-Time System Demonstration

Neil Robertson April 1, 20202 comments

Discrete-time systems are remarkable:  the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z).  Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system.  With a discrete-time model, we can then easily compute the time response to any input.  But note that the goal here is as much to...