## Padé Delay is Okay Today

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...

## Go Big or Go Home - Generating $500,000 for Contributors

In a Nutshell- A new Vendors Directory has been created
- Vendors will be invited to pay a sponsorship fee to be listed in the directory
- 100% of the basic sponsorship fee will be distributed to the *Related Sites community through a novel reward system
- The goal is for the directory to eventually generate - drum roll please - $500,000 on a yearly basis for contributing members on the *Related Sites
- Members will choose how the reward money gets distributed between...

## The New Forum is LIVE!

After months of hard word, I am very excited to introduce to you the new forum interface.

Here are the key features:

1- Easily add images to a post by drag & dropping the images in the editor

2- Easily attach files to a post by drag & dropping the files in the editor

3- Add latex equations to a post and they will be rendered with Mathjax (tutorial)

4- Add a code snippet and surround the code with

## Autocorrelation and the case of the missing fundamental

[UPDATED January 25, 2016: One of the examples was broken, also the IPython notebook links now point to nbviewer, where you can hear the examples.]

For sounds with simple harmonic structure, the pitch we perceive is usually the fundamental frequency, even if it is not dominant. For example, here's the spectrum of a half-second recording of a saxophone.

The first three peaks are at 464, 928, and 1392 Hz. The pitch we perceive is the fundamental, 464 Hz, which is close to...

## Generating pink noise

In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music. The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple algorithm for generating pink noise, also known as 1/f noise.

The fundamental idea of the algorithm is to add up several sequences of uniform random numbers that get updated at different rates. The first source gets updated at...

## Ancient History

The other day I was downloading an IDE for a new (to me) OS. When I went to compile some sample code, it failed. I went onto a forum, where I was told "if you read the release notes you'd know that the peripheral libraries are in a legacy download". Well damn! Looking back at my previous versions I realized I must have done that and forgotten about it. Everything changes, and keeping up with it takes time and effort.

When I first started with microprocessors we...

## Dealing With Fixed Point Fractions

Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...

## Optimizing the Half-band Filters in Multistage Decimation and Interpolation

This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.

Figure 1: Multistage decimation and interpolation using half-band filters.

Multistage Decimation – A Very Brief ReviewFigure 2(a) depicts the process of decimation by an integer factor D. That...

## The DFT Output and Its Dimensions

The Discrete Fourier Transform, or DFT, converts a signal from discrete time to discrete frequency. It is commonly implemented as and used as the Fast Fourier Transform (FFT). This article will attempt to clarify the format of the DFT output and how it is produced.

Living in the real world, we deal with real signals. The data we typically sample does not have an imaginary component. For example, the voltage sampled by a receiver is a real value at a particular point in time. Let’s...

## Amplitude modulation and the sampling theorem

I am working on the 11th and probably final chapter of Think DSP, which follows material my colleague Siddhartan Govindasamy developed for a class at Olin College. He introduces amplitude modulation as a clever way to sneak up on the Nyquist–Shannon sampling theorem.

Most of the code for the chapter is done: you can check it out in this IPython notebook. I haven't written the text yet, but I'll outline it here, and paste in the key figures.

Convolution...

## Spectral Flipping Around Signal Center Frequency

Most of us are familiar with the process of flipping the spectrum (spectral inversion) of a real signal by multiplying that signal's time samples by (-1)n. In that process the center of spectral rotation is fs/4, where fs is the signal's sample rate in Hz. In this blog we discuss a different kind of spectral flipping process.

Consider the situation where we need to flip the X(f) spectrum in Figure 1(a) to obtain the desired Y(f) spectrum shown in Figure 1(b). Notice that the center of...

## Discrete-Time PLLs, Part 1: Basics

Design Files: Part1.slx

Hi everyone,

In this series of tutorials on discrete-time PLLs we will be focusing on Phase-Locked Loops that can be implemented in discrete-time signal proessors such as FPGAs, DSPs and of course, MATLAB.

In the first part of the series, we will be reviewing the basics of continuous-time baseband PLLs and we will see some useful mathematics that will give us insight into the inners working of PLLs. In the second part, we will focus on...

## Peak to Average Power Ratio and CCDF

Peak to Average Power Ratio (PAPR) is often used to characterize digitally modulated signals. One example application is setting the level of the signal in a digital modulator. Knowing PAPR allows setting the average power to a level that is just low enough to minimize clipping.

However, for a random signal, PAPR is a statistical quantity. We have to ask, what is the probability of a given peak power? Then we can decide where to set the average...

## The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct

## Noise shaping

Keywords: Quantization noise; noise shaping

A brief introduction to noise shaping, with firm resolve not to miss the forest for the trees. We may still stumble over some assorted roots. Matlab example code is included.

QuantizationFig. 1 shows a digital signal that is reduced to a lower bit width, for example a 16 bit signal being sent to a 12 bit digital-to-analog converter. Rounding to the nearest output value is obviously the best that can be done to minimize the error of each...

## Setting the 3-dB Cutoff Frequency of an Exponential Averager

This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.

Figure 1 shows...

## Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

IntroductionThis is an article that is a continuation of a digression from trying to give a better understanding of the Discrete Fourier Transform (DFT). It is recommended that my previous article "Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)"[1] be read first as many sections of this article are directly dependent upon it.

A second family of formulas for calculating the frequency of a single pure tone in a short interval in the time domain is presented. It...

## A Beginner's Guide to OFDM

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system.

The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can...

## Spline interpolation

A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog

IntroductionSplines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...

## Padé Delay is Okay Today

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...

## Signed serial-/parallel multiplication

Keywords: Binary signed multiplication implementation, RTL, Verilog, algorithm

Summary- A detailed discussion of bit-level trickstery in signed-signed multiplication
- Algorithm based on Wikipedia example
- Includes a Verilog implementation with parametrized bit width

A straightforward method to multiply two binary numbers is to repeatedly shift the first argument a, and add to a register if the corresponding bit in the other argument b is set. The...

## DSP Related Math: Nice Animated GIFs

I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts. I thought there would be some value in aggregating the DSP related gifs on one page.

The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...## Optimizing the Half-band Filters in Multistage Decimation and Interpolation

This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.

Figure 1: Multistage decimation and interpolation using half-band filters.

Multistage Decimation – A Very Brief ReviewFigure 2(a) depicts the process of decimation by an integer factor D. That...

## Spline interpolation

A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog

IntroductionSplines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...

## A poor man's Simulink

Glue between Octave and NGSPICE for discrete- and continuous time cosimulation (download) Keywords: Octave, SPICE, Simulink

IntroductionMany DSP problems have close ties with the analog world. For example, a switched-mode audio power amplifier uses a digital control loop to open and close power transistors driving an analog filter. There are commercial tools for digital-analog cosimulation: Simulink comes to mind, and mainstream EDA vendors support VHDL-AMS or Verilog-A in their...

## Sinusoidal Frequency Estimation Based on Time-Domain Samples

The topic of estimating a noise-free real or complex sinusoid's frequency, based on fast Fourier transform (FFT) samples, has been presented in recent blogs here on dsprelated.com. For completeness, it's worth knowing that simple frequency estimation algorithms exist that do not require FFTs to be performed . Below I present three frequency estimation algorithms that use time-domain samples, and illustrate a very important principle regarding so called "exact"...

## Two jobs

For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.

I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other as a parent of three kids. My job...

## The Exponential Nature of the Complex Unit Circle

IntroductionThis is an article to hopefully give an understanding to Euler's magnificent equation:

$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$

This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.

Complex...## Setting the 3-dB Cutoff Frequency of an Exponential Averager

This blog discusses two ways to determine an exponential averager's weighting factor so that the averager has a given 3-dB cutoff frequency. Here we assume the reader is familiar with exponential averaging lowpass filters, also called a "leaky integrators", to reduce noise fluctuations that contaminate constant-amplitude signal measurements. Exponential averagers are useful because they allow us to implement lowpass filtering at a low computational workload per output sample.

Figure 1 shows...

## Benford's law solved with DSP

I have a longtime interest in the mystery of 1/f noise. A few years ago I came across Benford’s law, another puzzle that seemed to have many of the same characteristics.

Suppose you collect a large group of seemingly random numbers, such as might appear in a newspaper or financial report. Benford’s law relates to the leading digit of each number, such as "4" in 4.268, "3" in 0.0312, and "9" in -932.34. Since there are nine possible leading digits...