DSPRelated.com

Recruiting New Bloggers!

Stephane Boucher October 16, 20157 comments

Previous calls for bloggers have been very successful in recruiting some great communicators - Rick LyonsJason Sachs, Victor Yurkovsky, Mike Silva, Markus NentwigGene BrenimanStephen Friederichs,


A New Contender in the Digital Differentiator Race

Rick Lyons September 30, 20154 comments

This blog proposes a novel differentiator worth your consideration. Although simple, the differentiator provides a fairly wide 'frequency range of linear operation' and can be implemented, if need be, without performing numerical multiplications.

Background

In reference [1] I presented a computationally-efficient tapped-delay line digital differentiator whose $h_{ref}(k)$ impulse response is:

$$ h_{ref}(k) = {-1/16}, \ 0, \ 1, \ 0, \ {-1}, \ 0, \ 1/16 \tag{1} $$

and...


The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase

Rick Lyons August 18, 201517 comments

This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:

What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?

I'll declare two things to convince you to continue reading.

Declaration# 1: "That the coefficients must be symmetrical" is not a correct


Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm

Rick Lyons July 7, 20155 comments

If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.

Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:

$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...

Correcting an Important Goertzel Filter Misconception

Rick Lyons July 6, 201517 comments

Recently I was on the Signal Processing Stack Exchange web site (a question and answer site for DSP people) and I read a posted question regarding Goertzel filters [1]. One of the subscribers posted a reply to the question by pointing interested readers to a Wikipedia web page discussing Goertzel filters [2]. I noticed the Wiki web site stated that a Goertzel filter:

"...is marginally stable and vulnerable tonumerical error accumulation when computed usinglow-precision arithmetic and...

Fitting a Damped Sine Wave

Detlef Amberg July 3, 20155 comments

A damped sine wave is described by

$$ x_{(k)} = A \cdot e^{\alpha \cdot k} \cdot cos(\omega \cdot k + p)\tag{1}$$

with frequency $\omega$ , phase p , initial amplitude A and damping constant $\alpha$ . The $x_{(k)}$ are the samples of the function at equally spaced points in time.

With $x_{(k)}$ given, one often has to find the unknown parameters of the function. This can be achieved for instance with nonlinear approximation or with DFT – methods.

I present a method to find the...


Premium Forum?

Stephane Boucher May 25, 201514 comments

Chances are that by now, you have had a chance to browse the new design of the *related site that I published several weeks ago.  I have been working for several months on this and I must admit that I am very happy with the results.  This new design will serve as a base for many new exciting developments. I would love to hear your comments/suggestions if you have any, please use the comments system at the bottom of this page.

First on my list would be to build and launch a new forum...


Phase and Amplitude Calculation for a Pure Real Tone in a DFT: Method 1

Cedron Dawg May 21, 20151 comment
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the phase and amplitude of a non-integer frequency real tone in a DFT. The linearity of the Fourier Transform is exploited to reframe the problem as the equivalent of finding a set of coordinates in a specific vector space. The found coordinates are then used to calculate the phase and amplitude of the pure real tone in the DFT. This article...


Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling

Rick Lyons May 4, 20151 comment

Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.

The tool shows four important characteristics of periodic sampling:

  Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...

Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Jason Sachs April 27, 201516 comments

Other articles in this series:

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...


Reducing IIR Filter Computational Workload

Rick Lyons May 24, 20195 comments

This blog describes a straightforward method to significantly reduce the number of necessary multiplies per input sample of traditional IIR lowpass and highpass digital filters.

Reducing IIR Filter Computations Using Dual-Path Allpass Filters

We can improve the computational speed of a lowpass or highpass IIR filter by converting that filter into a dual-path filter consisting of allpass filters as shown in Figure 1.

...

Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling

Rick Lyons May 4, 20151 comment

Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.

The tool shows four important characteristics of periodic sampling:

  Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...

Hidden Linear Algebra in DSP

Sami Aldalahmeh June 17, 20105 comments

Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.

An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...


Multilayer Perceptrons and Event Classification with data from CODEC using Scilab and Weka

David Norwood November 25, 2015

For my first blog, I thought I would introduce the reader to Scilab [1] and Weka [2]. In order to illustrate how they work, I will put together a script in Scilab that will sample using the microphone and CODEC on your PC and save the waveform as a CSV file.


Design Square-Root Nyquist Filters

Neil Robertson July 13, 2020

In his book on multirate signal processing, harris presents a nifty technique for designing square-root Nyquist FIR filters with good stopband attenuation [1].  In this post, I describe the method and provide a Matlab function for designing the filters.  You can find a Matlab function by harris for designing the filters at [2].

Background

Single-carrier modulation, such as QAM, uses filters to limit the bandwidth of the signal.  Figure 1 shows a simplified QAM system block...


Model a Sigma-Delta DAC Plus RC Filter

Neil Robertson March 16, 20242 comments

Sigma-delta digital-to-analog converters (SD DAC’s) are often used for discrete-time signals with sample rate much higher than their bandwidth. For the simplest case, the DAC output is a single bit, so the only interface hardware required is a standard digital output buffer. Because of the high sample rate relative to signal bandwidth, a very simple DAC reconstruction filter suffices, often just a one-pole RC lowpass. In this article, I present a simple Matlab function that models the combination of a basic SD DAC and one-pole RC filter. This model allows easy evaluation of the overall performance for a given input signal and choice of sample rate, R, and C.


Third-Order Distortion of a Digitally-Modulated Signal

Neil Robertson June 9, 2020
Analog designers are always harping about amplifier third-order distortion.  Why?  In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.

In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude.  With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:

$$y=...


A Useful Source of Signal Processing Information

Rick Lyons March 23, 20168 comments

I just discovered a useful web-based source of signal processing information that was new to me. I thought I'd share what I learned with the subscribers here on DSPRelated.com.

The Home page of the web site that I found doesn't look at all like it would be useful to us DSP fanatics. But if you enter some signal processing topic of interest, say, "FM demodulation" (without the quotation marks) into the 'Search' box at the top of the web page

and click the red 'SEARCH...


Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.

Steve Maslen December 3, 20177 comments

This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.

  • Part 6: Self-Calibration, Measurements and Signalling (this part)
  • Part 5: