The Most Interesting FIR Filter Equation in the World: Why FIR Filters Can Be Linear Phase
This blog discusses a little-known filter characteristic that enables real- and complex-coefficient tapped-delay line FIR filters to exhibit linear phase behavior. That is, this blog answers the question:
What is the constraint on real- and complex-valued FIR filters that guarantee linear phase behavior in the frequency domain?I'll declare two things to convince you to continue reading.
Declaration# 1: "That the coefficients must be symmetrical" is not a correct
Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm
If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.
Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:
$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...Correcting an Important Goertzel Filter Misconception
Recently I was on the Signal Processing Stack Exchange web site (a question and answer site for DSP people) and I read a posted question regarding Goertzel filters [1]. One of the subscribers posted a reply to the question by pointing interested readers to a Wikipedia web page discussing Goertzel filters [2]. I noticed the Wiki web site stated that a Goertzel filter:
"...is marginally stable and vulnerable tonumerical error accumulation when computed usinglow-precision arithmetic and...Fitting a Damped Sine Wave
A damped sine wave is described by
$$ x_{(k)} = A \cdot e^{\alpha \cdot k} \cdot cos(\omega \cdot k + p)\tag{1}$$
with frequency $\omega$ , phase p , initial amplitude A and damping constant $\alpha$ . The $x_{(k)}$ are the samples of the function at equally spaced points in time.
With $x_{(k)}$ given, one often has to find the unknown parameters of the function. This can be achieved for instance with nonlinear approximation or with DFT – methods.
I present a method to find the...
Premium Forum?
Chances are that by now, you have had a chance to browse the new design of the *related site that I published several weeks ago. I have been working for several months on this and I must admit that I am very happy with the results. This new design will serve as a base for many new exciting developments. I would love to hear your comments/suggestions if you have any, please use the comments system at the bottom of this page.
First on my list would be to build and launch a new forum...
Phase and Amplitude Calculation for a Pure Real Tone in a DFT: Method 1
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the phase and amplitude of a non-integer frequency real tone in a DFT. The linearity of the Fourier Transform is exploited to reframe the problem as the equivalent of finding a set of coordinates in a specific vector space. The found coordinates are then used to calculate the phase and amplitude of the pure real tone in the DFT. This article...
Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling
Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.
The tool shows four important characteristics of periodic sampling:
Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...
Understanding and Implementing the Sliding DFT
IntroductionIn many applications the detection or processing of signals in the frequency domain offers an advantage over performing the same task in the time-domain. Sometimes the advantage is just a simpler or more conceptually straightforward algorithm, and often the largest barrier to working in the frequency domain is the complexity or latency involved in the Fast Fourier Transform computation. If the frequency-domain data must be updated frequently in a...
Exact Frequency Formula for a Pure Real Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a major theoretical advance in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is...
A Direct Digital Synthesizer with Arbitrary Modulus
Suppose you have a system with a 10 MHz sample clock, and you want to generate a sampled sinewave at any frequency below 5 MHz on 500 kHz spacing; i.e., 0.5, 1.0, 1.5, … MHz. In other words, f = k*fs/20, where k is an integer and fs is sample frequency. This article shows how to do this using a simple Direct Digital Synthesizer (DDS) with a look-up table that is at most 20 entries long. We’ll also demonstrate a Quadrature-output DDS. A note on...
Simulink-Simulation of SSB demodulation
≥≥≥ Simulink-Simulation of SSB demodulation or modulation from the article “Understanding the ‘Phasing Method’ of Single Sideband Demodulation” by Richard Lyons Josef HoffmannThe article “Understanding the ‘Phasing Method’ of Single Sideband Demodulation” by Richard Lyons is a very good description of this topic. The block representation from the figures are clear and easy to understand. They are predestined for a simulation in Simulink. The simulation can help...
Sonos, Shut Up and Take My Money! - Is Spatial Audio Finally Here?
Although I generally agree that money can't buy happiness, I recently made a purchase that has brought me countless hours of pure joy. In this blog post, I want to share my excitement with the DSPRelated community, because I know there are many audio and music enthusiasts here, and also because I suspect there is a lot of DSP magic behind this product. And I would love to hear your opinions and experiences if you have also bought or tried the Sonos ERA 300 wireless speaker, or any other...
Least-squares magic bullets? The Moore-Penrose Pseudoinverse
Hello,
the topic of this brief article is a tool that can be applied to a variety of problems: The Moore-Penrose Pseudoinverse.While maybe not exactly a magic bullet, it gives us least-squares optimal solutions, and that is under many circumstances the best we can reasonably expect.
I'll demonstrate its use on a short example. More details can be found for example on Wikipedia, or the Matlab documentation...
Some Observations on Comparing Efficiency in Communication Systems
IntroductionEngineering is usually about managing efficiencies of one sort or another. One of my favorite working definitions of an engineer says, "An engineer is somebody who can do for a nickel what any damn fool can do for a dollar." In that case, the implication is that the cost is one of the characteristics being optimized. But cost isn't always the main efficiency metric, or at least the only one. Consider how a common transportation appliance, the automobile, is optimized...
'z' as in 'Zorro': Frequency Masking FIR
An efficient way to implement FIR filters. Matlab / Octave example included. Keywords: Frequency masking FIR filter implementation
IntroductionAn "upsampled" FIR filter uses multiple-sample delays between the taps, compared to the unity delays in a conventional FIR filter. The resulting frequency response has steeper edges, but contains periodic images along the frequency axis (Fig. 1). Due to the latter, it is typically not too useful on its own.
Figure 1: Conventional and 'upsampled'...Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved
This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.
Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...
Discrete Wavelet Transform Filter Bank Implementation (part 2)
Following the previous blog entry: http://www.dsprelated.com/showarticle/115.php
Difference between DWT and DWPTBefore getting to the equivalent filter obtention, I first want to talk about the difference between DWT(Discrete Wavelet Transform) and DWPT (Discrete Wavelet Packet Transform). The latter is used mostly for image processing.
While DWT has a single "high-pass" branch that filters the signal with the h1 filter, the DWPT separates branches symmetricaly: this means that one...
Computing Chebyshev Window Sequences
Chebyshev windows (also called Dolph-Chebyshev, or Tchebyschev windows), have several useful properties. Those windows, unlike the fixed Hanning, Hamming, or Blackman window functions, have adjustable sidelobe levels. For a given user-defined sidelobe level and window sequence length, Chebyshev windows yield the most narrow mainlobe compared to any fixed window functions.
However, for some reason, detailed descriptions of how to compute Chebyshev window sequences are not readily available...
Do Multirate Systems Have Transfer Functions?
The following text describes why I ask the strange question in the title of this blog. Some months ago I was asked to review a article manuscript, for possible publication in a signal processing journal, that presented a method for improving the performance of cascaded integrator-comb (CIC) decimation filters [1].
Thinking about such filters, Figure 1(a) shows the block diagram of a traditional 2nd-order CIC decimation filter followed by downsampling by the sample rate factor R. There we...
Hidden Linear Algebra in DSP
Linear algebra (LA) is usually thought of as a blunt theoretical subject. However, LA is found hidden in many DSP algorithms used widely in practice.
An obvious clue in finding LA in DSP is the linearity assumption used in theoretical analysis of systems for modelling or design. A standard modelling example for this case would be linear time invariant (LTI) systems. LTI are usually used to model flat wireless communication channels. LTI systems are also used in the design of digital filter...
scipy.signal calling all developers
There has been some chatter on the scipy-dev mailing list lately about enhancing the scipy.signal package. Unfortunately, there seems to be a split. Some are going off and starting a new package scikit-signal. The original developer, Travis Oliphant, appears to have strong interest in seeing the scipy.signal evovle. If you are interested in signal processing you should check out the mailing lists (
Handy Online Simulation Tool Models Aliasing With Lowpass and Bandpass Sampling
Analog Devices Inc. has posted a neat software simulation tool on their corporate web site that graphically shows the aliasing effects of both lowpass and bandpass periodic sampling. This is a nice tutorial tool for beginners in DSP.
The tool shows four important characteristics of periodic sampling:
Characteristic# 1: All input analog spectral components, regardless of their center frequencies, show up (appear) below half the sample rate in the digitized...Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed
This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.
Additional design...A Useful Source of Signal Processing Information
I just discovered a useful web-based source of signal processing information that was new to me. I thought I'd share what I learned with the subscribers here on DSPRelated.com.
The Home page of the web site that I found doesn't look at all like it would be useful to us DSP fanatics. But if you enter some signal processing topic of interest, say, "FM demodulation" (without the quotation marks) into the 'Search' box at the top of the web page
and click the red 'SEARCH...
Python number crunching faster? Part I
Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this to be very useful in my work. Lately there has been some chatter on speeding up Python.
From another project I follow, MyHDL, I was introduced to the Python JIT compiler,
Bayes meets Fourier
Joseph Fourier never met Thomas Bayes—Fourier was born in 1768, seven years after Bayes died. But recently I have been exploring connections between the Bayes filter and the Fourier transform.
By "Bayes filter", I don't mean spam filtering using a Bayesian classifier, but rather recursive Bayesian estimation, which is used in robotics and other domains to estimate the state of a system that evolves over time, for example, the position of a moving robot. My interest in...
Make Hardware Great Again
By now you're aware of the collective angst in the US about 5G. Why is the US not a leader in 5G ? Could that also happen -- indeed, is it happening -- in AI ? If we lead in other areas, why not 5G ? What makes it so hard ?
This hand-wringing has reached the highest levels in US government. Recently the Wall Street Journal reported on a DoJ promoted plan 1 to help Cisco buy Ericsson or Nokia, to give the US a leg up in 5G. This is not a new plan,...
Implementing Simultaneous Digital Differentiation, Hilbert Transformation, and Half-Band Filtering
Recently I've been thinking about digital differentiator and Hilbert transformer implementations and I've developed a processing scheme that may be of interest to the readers here on dsprelated.com.
The Risk In Using Frequency Domain Curves To Evaluate Digital Integrator Performance
This blog shows the danger in evaluating the performance of a digital integration network based solely on its frequency response curve. If you plan on implementing a digital integrator in your signal processing work I recommend you continue reading this blog.
Background
Typically when DSP practitioners want to predict the accuracy performance of a digital integrator they compare how closely that integrator's frequency response matches the frequency response of an ideal integrator [1,2]....






















